Development of 600V Industrial DC Microgrid for Highly Automated Manufacturing Applications: Factory and Laboratory Infrastructure Experience

Armands Senfelds, Leonids Ribickis, Ansis Avotins, Peteris Apse-Apsitis

Riga Technical university
Institute of Industrial Electronics and Electrical Technologies

09.05.2018

Outline

- Why reconsider power distribution at automated factory level?
- Expected challenges of DC type distribution.
- Physical demonstrator development project at industry and university.
- Outcomes and results.
Why reconsider power distribution at automated factory level?

- Energy efficiency
- Emission reduction (2020 goals)
- Power quality and availability
- Integration of renewable sources and storage

Industrial robot vs Automobile

Fuel \rightarrow Combustion engine \rightarrow Mechanical drive \rightarrow Brakes

AC Grid \rightarrow AC/DC Conversion \rightarrow Electric drive \rightarrow Brake resistor
Transitions in power supply

- Internal combustion car: Gasoline
- Hybrid, Plug-In hybrid car: Gasoline & Electric
- Pure electric car: Electric

Mixed AC and DC (Hybrid) solution.
Mixed AC and DC (Hybrid) solution.

<table>
<thead>
<tr>
<th>Application</th>
<th>DC-Bus sharing</th>
<th>Average Power kW</th>
<th>Difference, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling 20 min, no tool</td>
<td>none</td>
<td>6.23</td>
<td>-</td>
</tr>
<tr>
<td>Handling 20 min, no tool</td>
<td>enabled</td>
<td>4.92</td>
<td>-21.1%</td>
</tr>
<tr>
<td>Handling 20 min, 150 & 200 kg tool</td>
<td>none</td>
<td>8.67</td>
<td>-</td>
</tr>
<tr>
<td>Handling 20 min, 150 & 200 kg tool</td>
<td>enabled</td>
<td>6.70</td>
<td>-22.7%</td>
</tr>
</tbody>
</table>

Rīgas Tehniskā universitāte
Expected challenges of DC type supply.

- DC component availability at supplier portfolios
- Standards
- Safety considerations
- Conversion of existing tools for DC supply

AREUS PROJECT
Partners and Research Topics
AREUS Experimental Validation (WP5)

DC power cabinet and PLC control panel @DAI

DC bus bar system @DAI

Robot load emulator @RTU Demo

AREUS Experimental Validation (WP5) at RTU

Industrial DC-Grid at RTU Demo Lab – for SME application
First experimental tests carried out by scientists of RTU and UNIMORE shows that, if comparing AC and DC robots with the same movement trajectory and no tool attached, possible amount of reusable electrical energy is up to 9%.

Robot emulators - Drive stands

Electrical installation and mechanical setup of both DC Power flow emulators has been accomplished in the AREUS RTU laboratory. The system can replicate the robot power graph with an 99.95% accuracy.

A controller has been developed for the emulator, enabling:
- Automatic control – preprogrammed power cycle
- PLC control
- Manual control (switches, potentiometer)
- DC power monitoring
Battery energy storage system

Structure of Battery energy storage system (BESS)

- DC/DC interface converter
- Battery pack
- Battery energy storage system controller
- PROFIBUS communication

Cell balancing:
- A balancing module per cell
- Switched resistor balancing
- Voltage monitoring
- Temperature monitoring
- Ring topology data exchange

Challenge: Lifetime vs Power parameters?

Aging costs per cycle, €

Depth of discharge, %

Battery pack:
- 144 LiFePO4 cells
- 432 – 526V
- 40Ah
- 40A charge/discharge
- 8 subpacks of 18 cells

DC/DC interface converter:
- Non-isolated bidirectional converter
- Buck converter from grid to battery
- Boost converter from battery to grid
- Up to 97% efficiency
- Power 18kW
- 4U 19" case
RTU Demo Cell PLC System layout

Industrial DC-Grid at RTU Demo Lab – for SME application
RTU developed AC and DC power measurement system

Power measurements
Voltage: DC 600V±20%
Current: ±70A,
USB 5V = 24V
Max resolution: 1ms
Nominal resolution: 20ms

AnyBus module - Output to ProfiNet
Optical communication to data concentrator (PC)

Robot tool mass and recuperated energy?
Robot tool mass and recuperated energy?

Robot consumption simulation platform

DAI and RTU developed tool provides:

- Generation of sample production cycles
- Power consumption of KUKA industrial robots
- Easy system offline modelling
- Power consumption of industrial tools (welding, clinching, gluing)
- System optimization with simulation data
- Energy consumption integration in VCS [continued by Daimler]
Industrial DC-Grid at DAIMLER – for large industry application

DAI has constructed a demonstration cell with 4 DC-power-supplied prototype industrial robots at DAI, Sindelfingen, Germany. Included subcomponents:

- Central AC/DC interface converter (Active Frontend) – rated power 450kW.
- Set of 4 KUKA industrial robot manipulator prototypes for DC type electrical infrastructure Quantec KR210 R2700 Prime.
- Aluminum spot welding tool mounted on industrial robot, DC prototype based on Bosch Rexroth product.
- Rivet clinching tool DC prototype related to existing equipment provided by Tox.
- Glue dispensing tool equipment prototype for DC electrical supply, developed by Daimler AG.

Synchronous multipoint power flow measurements.
Measurement system

- 2.8 kHz sampling rate
- 20 ms averaging of power calculation
- Optic fiber data transmission

Power flows within DC cell.
Recuperated power

<table>
<thead>
<tr>
<th>DC load group (4 robots, tools, capacitor buffer)</th>
<th>Robot 1</th>
<th>Robot 2</th>
<th>Robot 3</th>
<th>Robot 4</th>
<th>Technology tools (4 units)</th>
<th>Capacitor buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{pos}, kW</td>
<td>8.01</td>
<td>0.99</td>
<td>0.84</td>
<td>0.68</td>
<td>0.64</td>
<td>3.51</td>
</tr>
<tr>
<td>P_{neg}, kW</td>
<td>1.06</td>
<td>0.012</td>
<td>0.1</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>$P_{neg}/P_{pos}, %$</td>
<td>13.23</td>
<td>1.21</td>
<td>10.64</td>
<td>5.9</td>
<td>6.25</td>
<td>1</td>
</tr>
</tbody>
</table>

Overall 4 robot DC cell energy consumption presented 10% less energy consumed compared to AC supplied cell for particular process.

Outcomes

- Follow up project in Germany: DC Industrie.
- Interest from component suppliers, development of DC distribution and protection elements.
- Consideration of automotive battery pack utilization at production equipment supply.
- Detailed modelling of electrical loads and subsystems – like other automation equipment at factory design phase.
Thank you!