
Characterization Methods for the State of Charge

Estimation of Lithium-ion Batteries

F. Conte, S. Massucco, M. Saviozzi, F. Silvestro
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Abstract—State of charge (SOC) estimation is an important
task when managing batteries. This estimation, in fact, in-
fluences the control policies of these devices, especially when
optimization algorithms are used to determine the set points
of the power requested from (supplied to) them. The reliability
of this estimation is affected by the accuracy with which
the parameters of the dynamical model of the battery have
been derived. This paper compares the effects of parameters
identification on state of charge estimation algorithm. The
comparison are performed on a real Lithium-Ion cell, whose
parameters are identified using electrochemical impedance
spectroscopy and autoregressive-moving-average model with
exogenous inputs. Thus, the two models are used for state of
charge estimation by means of a Kalman-filter-based algorithm.
Three charge/discharge profiles are repeated in order to test
the cell at different starting SOCs. The experimental results
confirm that different methods for parameters identification
lead to different (possibly inaccurate) SOCs.

I. INTRODUCTION

Energy storage devices are gaining importance in the

management of power systems, distribution grids, and mi-

crogrids [1], [2], [3], [4]. There are several challenges con-

cerning energy storage devices’ modeling and management

(e.g., the identification of accurate models for predicting

batteries ageing [5] and for an efficient exploitation of

batteries’ capabilities according to the particular operating

conditions [6]). A reliable identification of the parameters

of a battery model is crucial for all those algorithms that

rely on accurate estimation of the state of the device, being

the state of charge (SOC) the most important variable to be

monitored [7], [8].

SOC estimation has been studied in many papers and

different techniques have been proposed to tackle this prob-

lem (some more promising than others). In [9] a PI-based

observer is proposed. The key feature of this technique is

the ability to dynamically update the values of the equivalent

circuit parameters, especially the equivalent capacitance of

the battery. In [10], a review of the main techniques used

for SOC estimation is presented and results obtained by

using Kalman filter technique are compared with those

obtained by means of Ampere-hour-counting (also known

as Coulomb-counting). Authors state that electrochemical

impedance spectroscopy (EIS) technique had not been ef-

fectively applied to SOC estimation problems till then.

In [11], EIS technique, combined with extended Kalman

filter (EKF), is used, but the focus of the work is more

on the impedance estimation, rather than on evaluating the

effects that this estimation has on SOC. In [12], both EIS

and EKF are used for effective SOC estimation. However,

the comparison is performed with the Coulomb-counting

technique, which may not be reliable, especially in case of

measurement errors [9], [13].

In [14], authors propose an EKF-based estimator. In this

paper the SOC is one of the estimated variables and the

open-circuit voltage (OCV) of the cell is derived using a

detailed electrical equivalent model of the cell itself, taking

into account also hysteresis effects. The approach proposed

in the present work is similar, but uses a less complex equiv-

alent model, thus allowing an easier parameter identification

process, and estimates the SOC by inverting the measured

SOC-OCV map, rather than directly estimating the SOC and

then calculating the OCV.

The main contribution of the present paper is the quan-

titative comparison of the results obtained using two dif-

ferent methodologies for identifying the parameters of a

battery equivalent model. In particular, the two approaches

are based on EIS and autoregressive-moving-average model

with exogenous inputs (ARMAX) techniques. The former

derives the values of the model parameters by means of a

spectral analysis, while the latter exploits the time-domain

characteristics of controlled charge and discharge tests.

The comparison, rather than being based on the numerical

outputs of these two methodologies, is performed by looking

at the results obtained by a Kalman-filter-based SOC estima-

tion algorithm. The whole procedure has been validated on

a Lithium-Ion cell tested using three different drive cycles.

This resulted in an extensive comparison of the results of a

Kalman-based on-line SOC estimation using real-life current

profiles at different starting SOC levels. This comparison

(based on real SOC values inferred from measured OCVs

after adequate rest-time periods, as described in Section IV)

demonstrates how a more comprehensive identification of the

battery model parameters helps in obtaining a more effective

SOC estimation. This methodology for the evaluation of the

estimation error is not conventional, but assures a more

accurate validation.

The paper is organized as follows. Section II describes

the two characterization methods (i.e., EIS and ARMAX) of

a Lithium-Ion battery cell. In this Section, the numerical

results of the two methods are also reported. Section III

describes a proper SOC estimation method for analyzing the

impact of the two characterization methods on the estimation

accuracy. In Section IV the evaluation results are presented.

Finally, conclusions are drawn in Section V.
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II. CHARACTERIZATION METHODS

A. Model Description

The Lithium-Ion battery has been modeled as a second

order equivalent electrical circuit [8], [15], [16], [17]. The

circuit scheme is depicted in Figure 1.

Figure 1. Two RC parallel branches equivalent circuit of the cell.

The battery SOC [%] is given by the voltage VSOC

across the whole-charge capacitor Cb through the relation:

SOC = VSOC/V
nom× 100, where V nom is the battery rated

voltage. The model defines the dynamical relation between

SOC and the measured terminal voltage VB and load current

IB. Accordingly to Figure 1, VB can be defined as:

VB = Voc (SOC)− Vf − Vs −R0IB, (1)

where:

• Voc(SOC) is the nonlinear mapping from the battery

SOC and the open-circuit voltage Voc [V];

• Vf and Vs [V] are the voltages of the two RC networks

(Rf , Cf) and (Rs, Cs), respectively;

• R0 [Ω] is the internal battery resistance.

The dynamics of Vf , Vs and VSOC are given by:

V̇f = −
1

RfCf

Vf +
1

Cf

IB (2)

V̇s = −
1

RsCs

Vs +
1

Cs

IB (3)

V̇SOC = −
1

Cb

IB (4)

B. Electrochemical Impedance Spectroscopy Procedure

Electrochemical impedance spectroscopy (EIS) [18] is

a methodology for the characterization of electrochemical

equipment. The basic principle is to perturb the steady-

state operating point by injecting a small-signal ac current,

measure the voltage, and derive the complex impedance

Z (jω) from the ratio between voltage and current phasors.

By spanning an appropriately wide range of frequencies the

characteristic Nyquist plots can be drawn. As this method-

ology is usually performed for capacitive elements, these

graphs are built by plotting the results on the complex

plane (ℜ,−ℑ). Information contained in such graphs are

extremely useful because they give the indication on how the

impedance changes (not only numerically, i.e., in its absolute

value, but also in its dynamical behavior, i.e., in the way the

real and imaginary parts of the impedance reciprocally vary).

Data obtained through EIS, in particular, can be used to

fit the parameters of a model (such as the one in Figure 1).

The fitting can be performed by minimizing the normalized

mean squared error. Let N be the number of injected

frequencies, e be the column vector of the errors between

the equivalent impedance model Z (ω,x) ∈ C

N and the

measured impedance at the given frequencies y ∈ C

N

(e := Z − y = (ℜ{Z} − ℜ{y}) + j (ℑ{Z} − ℑ{y}) =
(Zℜ − yℜ) + j (Zℑ − yℑ) = eℜ + jeℑ). The equivalent

impedance model is function of the specific frequency

fk = ωk/2π at which it is calculated and of the values

(all gathered in the vector of unknowns x) of the circuit

components which make up the equivalent model. Thus, the

minimization of the normalized mean squared error can be

written as

min
x

[

eTℜAŴAeℜ + eTℑBW̃Beℑ

]
1

2

(5)

where Ŵ = diag(ŵ1, . . . , ŵN ) and W̃ =
diag(w̃1, . . . , w̃N ) are two weight matrices that

can be suitably set to give more relevance to the

real or imaginary part of the equivalent impedance

Z and, possibly, to each single sample separately,

and A = diag(1/ℜ{y1} , . . . , 1/ℜ{yN}) and

B = diag(1/ℑ{y1} , . . . , 1/ℑ{yN}) are the two diagonal

matrices used for the normalization.

If the model to be fitted is the one represented in Figure 1,

then the vector of unknowns is x = [Cb R0 Rf Cf Rs Cs]
T

and the equivalent impedance Z (ω,x) is R0 + 1/jωCb +
Rf/ (1 + jωRfCf) + Rs/ (1 + jωRsCs). The problem rep-

resented in (5) is nonlinear.

The cell used for these tests is the Polymer Lithium-

ion battery 8773160K manufactured by General Electronics

Battery Co., Ltd. The characteristic data of cell are reported

in Table. I.

Table I
MAIN DATA OF THE CELL.

ITEM SPECIFICATIONS

rated capacity C5 =10 Ah

rated voltage 3.7 V

charge cut-off voltage 4.2 V

discharge cut-off voltage 2.75 V

The instrumentation used for the EIS procedure is a 100-A

booster (VMP3B-100) connected to a potentiostat (SP-150),

(both from Biologic Science Instruments), controlled by a

PC via USB connection with EC-LAB software.

The measurement tests have been carried out at different

OCVs. Starting from charge cut-off voltage (which, after a

rest time interval, corresponds to a fully charged cell), the

small-signal ac current is imposed to the cell in order to

measure the impedance at the different frequencies. Then,

an energy corresponding to 10% of the nominal energy is

drawn from the cell and, before starting a new measurement

campaign the cell is left idle for the rest time period. The

procedure ends when the last measurement campaign is close

to the nominal voltage. For this experiment the rest time

interval has been set to 10 min. The complete voltage profile

of the cell during the test is reported in Figure 2.

In the plot, the high frequency oscillations induced by

the EIS procedure at the end of the rest time interval are

evident. It can be easily seen that 11 measurements of

the impedance have been carried out. It is worth noting
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Figure 2. EIS procedure. Cell voltage profile during the procedure
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Figure 3. EIS procedure. Examples of the output of the EIS procedure for
two different starting OCVs corresponding to SOC = 80% (blue square
marker line) and SOC = 20% (red circle marker line), respectively.

that each measurement campaign can be identified by the

starting SOC, rather than by the starting OCV (the two notions

being practically the same). Two of these eleven curves

are reported in Figure 3. In particular, the curves are those

obtained during the third and the ninth iteration of the EIS

procedure. They correspond to the impedance measured for

SOC = 80% (Voc = 4.041 V) and SOC = 20% (Voc =
3.767 V). The bottom left values of the curves are calculated

for frequencies of 1.5 kHz approximately, while the upper

right values are calculated for f = 1 mHz. The right end

of the half circles are calculated for frequencies of 1 Hz,

approximately.

The values obtained by applying the minimization de-

scribed in (5) are reported in Table II. The fitting has been

performed with Ŵ = W̃ = IN . In the last column of

Table II the mean values of each parameter are reported.

These mean values have been used for the comparison of

the effects of the parameters estimation techniques on SOC

estimation algorithms.

C. ARMAX Model Identification

The ARMAX method identifies the parameters of the

Randles model (see Figure 1) using controlled charge and

discharge test results, as illustrated in [8], [16], [17]. In

particular, a discharge test has been performed: starting from

a state of total charge, the battery has been fully discharged

through a sequence of current steps. Each step is 1 C-rate

high (IB = 10 A) and long enough to reduce the SOC by

2%. The steps are followed by a 30 min pause, during which

the system rests. Globally the test lasts for almost 26 h. All

measurements are collected with 1 s granularity.

The OCV, Voc, is assumed equal to the voltage value

measured at the end of the resting period. In Figure 4 the

circles show when the Voc evaluation is performed in a

discharge test.
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Figure 4. Current and voltage profiles during a discharge test.

During the tests, each Voc value is collected together with

the corresponding SOC. The 49 collected pairs of (SOC, Voc)
values are registered and used to identify a fitting curve

Voc(SOC). The best result has been obtained by adopting

a truncated Fourier series fitting function of eighth order,

depicted in Figure 5 together with the registered pairs

(SOC, Voc).

Referring to model (1)–(4) proposed in Section II-A, (1)

can be formulated in the Laplace domain as follows:

VB(s) = Voc(s)−R0IB(s)−Gm(s)IB(s), (6)

Gm(s) =
Rs

1 + sRsCs

+
Rf

1 + sRfCf

. (7)

The model parameters are identified as follows:

Table II
VALUES OF THE PARAMETERS OF THE EQUIVALENT IMPEDANCE OBTAINED THROUGH EIS PROCEDURE AND THE OPTIMIZATION IN (5).

EIS 1 EIS 2 EIS 3 EIS 4 EIS 5 EIS 6 EIS 7 EIS 8 EIS 9 EIS 10 EIS 11 MEAN VALUES

Cb [F] 36000 38469 36000 39995 39996 36000 36003 36000 36951

R0 [Ω] 0.0041 0.0041 0.0040 0.0040 0.0041 0.0041 0.0042 0.0044 0.0043 0.0043 0.0041 0.0042

Rf [Ω] 0.0034 0.0043 0.0044 0.0047 0.0039 0.0040 0.0036 0.0037 0.0042 0.0033 0.0043 0.0040

Cf [F] 9995 9990 7109 9988 9993 9992 6093 5448 9991 7081 9991 8697

Rs [Ω] 0.0016 0.0015 0.0014 0.0015 0.0014 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015

Cs [F] 0.6387 0.4493 0.6826 0.7125 1.5171 0.7344 0.7394 0.7976 0.8463 0.9011 0.9967 0.8196
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Figure 5. SOC-OCV map truncated Fourier series fitting curve. Black dots
are the registered pairs (SOC, Voc).

• Cb: excluding the temperature effects, the whole-charge

capacity is equal to 3600×(Nominal Capacity)[Ah].

The resultant capacity is therefore Cb = 36000 F.

• R0: the internal resistance is calculated as the ratio

between the instantaneous voltage variation and the

amplitude of the k-th current step as shown in Figure 6:

R0,k =
vmin,k − vmax,k

imin,k − imax,k

. (8)

The final value of R0 is the mean value of whole set

of the computed internal resistances R0,k.

Figure 6. R0,k evaluation example.

• RC Network: relationship (6) can be rewritten as

Voc − VB −R0IB = GmIB =: Veq, (9)

where, assuming dIB/dt = 0 in the sampling period Ts

= 1 s, time-discretization provides, using Z-transform:

Veq(z) =

(

Rf (1− exp(−Ts/Tpf)) z
−1

1− exp(−Ts/Tpf)z−1

+
Rs (1− exp(−Ts/Tps)) z

−1

1− exp(−Ts/Tps)z−1

)

IB(z)

=

(

z−1(b1 + b2z
−1)

1 + a1z−1 + a2z−2

)

IB(z) (10)

where, Tps, Tpf are the time constants of the two RC
sub-networks. Coefficients a1, a2, b1, b2 were identified

by the ARMAX identification method [19]. The values

were then used to define the parameters in Table II.

Table II
RC NETWORK PARAMETERS

PARAMETER VALUE PARAMETER VALUE

R0 6.1 mΩ Rf 2.9 mΩ

Cb 36000 F Rs 3.7 mΩ

Tpf 22.5 s Cf 7745 F

Tps 345.9 s Cs 93472 F

III. THE SOC ESTIMATION ALGORITHM

This section briefly recalls the SOC estimation algorithm

used in Section IV to analyze the impact of the two battery

characterization methods above proposed on the estimation

accuracy. The adopted estimation procedure is an extended

Kalman filter (EKF) based on the truncated Fourier series

representation of the nonlinear SOC-OCV map. In [8], such

an approach is proved to have the best performances within a

set of other candidate Kalman-based estimation procedures.

In order to introduce the estimation technique, model (2)–

(4) is firstly written in the standard continuous-time state

space form

ẋ = Āx+ B̄u (11)

y = h(x) (12)

where x, u and y are the system state, control and output

vector, respectively defined as

x =





Vf

Vs

VSOC



 , u = IB, y = VB, (13)

and where

Ā =





− 1
RfCf

0 0

0 − 1
RsCs

0

0 0 0



 , B̄ =





1
Cf
1
Cs

− 1
Cb



 , (14)

h(x) = Voc(x3)− x1 − x2 −R0u (15)

System (11)–(12) is nonlinear because of the SOC-OCV

map appearing in the output map (15). Therefore, nonlinear

Kalman filtering approaches are required. As for any model

based estimation algorithm, nonlinear filtering performances

depend on the model accuracy. In [8] three possible rep-

resentations of the SOC-OCV map are considered. The one

resulted to offer the best estimation results in terms of root

mean square error (RMSE) is the truncated Fourier series

fitting curve, which has the following form (expressed as

function of VSOC = x3):

V F
oc(x3) =a0+

+
8

∑

n=1

[an(cos(nwx3)) + bn(sin(nwx3))]. (16)

After time-discretization, system (11)–(12) assumes the

form

xk+1 = Axk + wk, (17)

yk = h(xk) + vk, (18)

where xk = x(Tsk), yk = y(Tsk) and A = eĀTs .

Sequences wk and vk are supposed to be zero-mean, white,
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Gaussian and mutually independent. They are added to the

state and output equations in order to represent the model

uncertainties and the measurement errors (see [8] for more

details). System (17)–(18) is amenable to be processed

by the standard EKF algorithm [20], which operates the

linearization of the output map (15) at each filtering step.

EKF returns the estimate the state vector xk, whose third

component corresponds to the estimate of the SoC voltage

VOC at the time step k.

IV. EXPERIMENTAL PERFORMANCES EVALUATION

In order to analyze the impact of the battery characteriza-

tion methods proposed in Section II, the EKF SOC estimation

algorithm described in Section III has been applied to real

experimental data based on the different set of parameters

identified for the test Polymer Lithium-ion battery, using EIS

and ARMAX techniques.

In the following, the EKF that uses the parameters iden-

tified by the ARMAX procedure is indicated with ARMAX

EKF. In the same way, EIS 1–11 EKFs and mean EIS EKF

indicate the EKF based on the parameters computed through

the 11 EIS procedures and their mean values, respectively.

The test battery has been driven with three load current

paths used as benchmark for electrical vehicles: New Eu-

ropean Drive Cycle (NEDC) [21], which moves the SOC

within the interval 80–63%; EPA Federal Test Procedure

72 (FTP-72) [22], which moves the SOC between 80–74%;

and EPA Federal Highway Fuel Economy Test Procedure

(HWFET) [23], which drives the SOC within the interval 83–

52%. Each current path consists of a set of sub-profiles of

4–8 minutes, separated by pause intervals lasting from 1 to

2 hours.
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Figure 7. Sketch of the real SoC computation procedure.

As shown in Figure 7, during pauses, SOC does not

change, whereas the measured terminal voltage VB converges

to the corresponding OCV. Therefore, a set of OCV values

is collected for each current path by registering the terminal

voltages VB at the end of the pause intervals. The real SOC

levels reached at the beginning of pauses are then post-

computed from the collected OCVs by inverting the SOC-

OCV map. The inverse map is obtained with high accuracy

by employing the spline smoothing fitting technique over the

same 49 pairs (SOC, Voc) used to identify the direct SOC-

OCV maps in Section II-C.

Figure 8 shows the absolute values of the SOC estimation

errors, defined as the difference between the filters SOC
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Figure 8. Experimental results: absolute values of the SOC estimation errors
in correspondence of the post-computed real SOC values.
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Figure 9. Experimental results: RMSEs.

estimates at the beginning of pauses and the post-computed

real SOC values, returned by the ARMAX EKF (red line),

by the EIS 1–11 EKFs (light blue lines), and by the mean

EIS EKF (dark blue line). For all the three datasets, EIS

EKF clearly over-performs the ARMAX EKF. This is partic-

ularly highlighted with the NEDC and HWFET current paths.

Figure 9 shows the corresponding root mean square errors

(RMSE), computed over the SOC estimation errors. In the

cases of NEDC and HWFET current paths, the estimation

performances result to be significantly sensitive to the values

of the identified parameters. In these cases, the EIS 1–11

EKFs significantly improve the estimation accuracy of the

ARMAX EKF. In particular the RMSE is reduced of about 2%
in the NEDC case, and of about 2.5% in the HWFET case.

There are no significant differences in the FTP-72 case, in

which the overall SOC variation is less relevant. The results

obtained by the EIS 1–11 EKFs are generally comparable

each others, whereas the mean EIS EKF effectively returns

average performances.

V. CONCLUSION

The work presented in this paper has focused on de-

termining the effect of different battery equivalent model

identification on SOC estimation. A Polymer Lithium-Ion

cell has been characterized using two different approaches,

namely EIS and ARMAX. The former follows a frequency-

domain approach, and the latter a time-domain procedure.
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Three power profiles (derived from driving test cycles) have

been applied to the cell and the two dynamical models have

been used to estimate the SOC. The analysis of the RMSEs

shows that the estimation accuracy strongly depends on the

precision of the estimated model parameters. In this terms,

the EIS-based procedure has resulted to be more accurate

with respect the ARMAX-based one. In conclusion, the EIS

technique can be considered a suitable model identification

method for developing high accuracy battery SOC estimators.
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[14] G. Pérez, M. Garmendia, J. F. Reynaud, J. Crego, and U. Viscarret,
“Enhanced closed loop State of Charge estimator for lithium-ion
batteries based on Extended Kalman Filter,” App. Energy, vol. 155,
pp. 834–845, 2015.

[15] M. Chen and G. Rincon-Mora, “Accurate electrical battery model
capable of predicting runtime and i-v performance,” IEEE Trans.
Energy Convers., vol. 21, no. 2, pp. 504–511, Jun. 2006.

[16] P. Spagnol, S. Rossi, and S. Savaresi, “Kalman Filter SoC estimation
for Li-Ion batteries,” in IEEE International Conference on Control

Applications (CCA), Sep. 2011, pp. 587–592.
[17] M. Gholizadeh and F. Salmasi, “Estimation of State of Charge,

Unknown Nonlinearities, and State of Health of a Lithium-Ion Battery
Based on a Comprehensive Unobservable Model,” IEEE Trans. Ind.
Electron., vol. 61, no. 3, pp. 1335–1344, Mar. 2014.

[18] P. Agarwal, M. E. Orazem, and L. H. Garcia-Rubio, “Measurement
Models for Electrochemical Impedance Spectroscopy I. Demonstra-
tion of Applicability,” J. Electrochem. Soc., vol. 139, no. 7, pp. 1917–
1927, Jul. 1992.

[19] M. Verhaegen and V. Verdult, Filtering and System Identification: A

Least Squares Approach. Cambridge University Press, 2007.
[20] B. D. O. Anderson and J. B. Moore, Optimal filtering. Prentice-Hall,

1979.
[21] Council of European Union, “Agreement Concerning the

Adoption of Uniform Technical Prescriptions for Wheeled
Vehicles, ...” Apr. 2013, E/ECE/324/Rev.2/Add.100/Rev.3–
E/ECE/TRANS/505/Rev.2/Add.100/Rev.3 [Online]. Available:
http://www.unece.org/trans/main/wp29/wp29regs101-120.html.

[22] United States Environmental Protection Agency, “Control of Emis-
sions From New And In-Use Highway Vehicles and Engines,” Jul.
2006, Title 40 CFR Chapter I Subchapter C Part 86 , Appendix I
[Online]. Available: http://www.gpo.gov.

[23] ——, “Fuel Economy of Motor Vehicles,” Jul. 2003, Title 40 CFR
Chapter I Subchapter Q Part 600, Appendix I [Online]. Available:
http://www.gpo.gov.

3rd International Hybrid Power Systems Workshop | Tenerife, Spain | 08 – 09 May 2018




