

5th International Hybrid Power Systems Workshop

18-19 May 2021

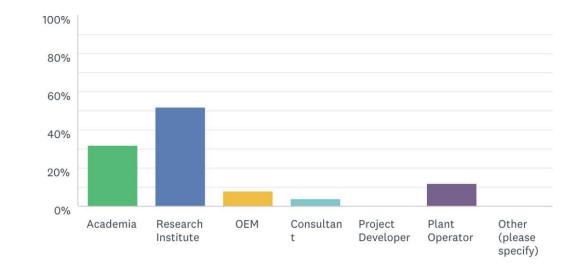
Jennifer King, Vahan Gevorgian, Eric Lantz (NREL, USA), Kaushik Das, Katherine Dykes (DTU, Denmark)

Expert Elicitation on Hybrid Power Plants

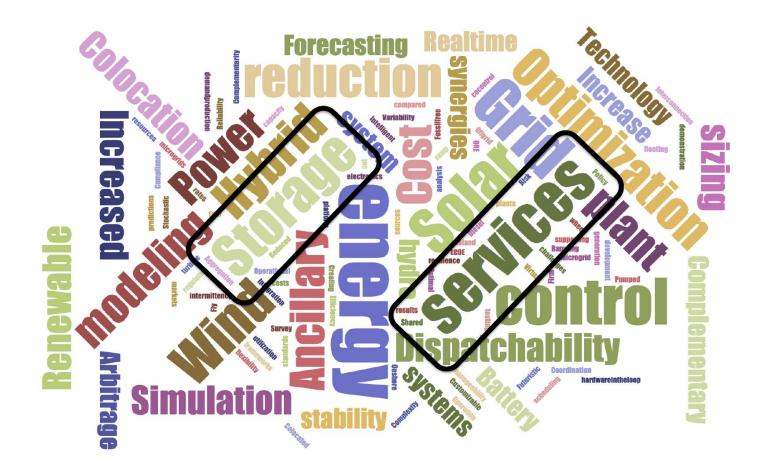
DTU

liea wind

Expert Survey

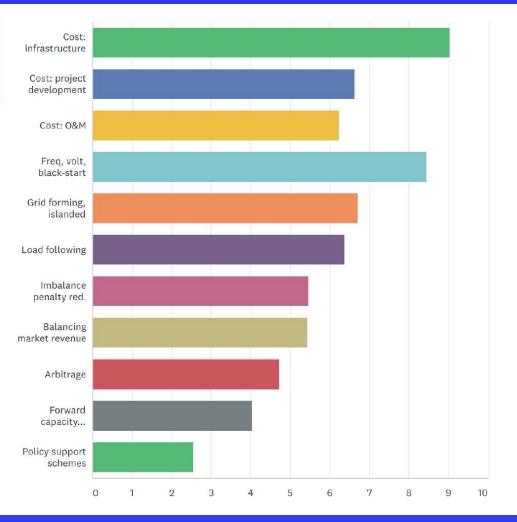

- 1. Five keywords that you associate with HPP
- 2. Objective(s) of HPP
- 3. Barriers to widespread adoption of HPP
- 4. Types of storage that are most promising
- 5. Current state of hybrid power plants
- 6. Grid services
- 7. Top five research priorities

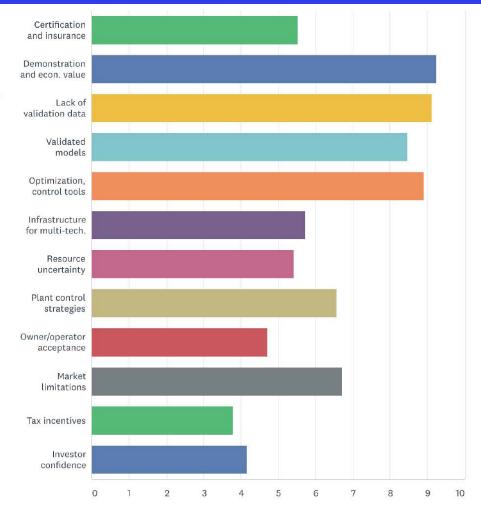
Hybrid Power Plant Community – Survey Questions



Survey Participants

- Belgium
- Canada
- Switzerland
- Germany
- Denmark
- Spain
- Finland
- France
- Ireland
- Japan
- Netherlands
- Norway
- Sweden
- United Kingdom
- United States



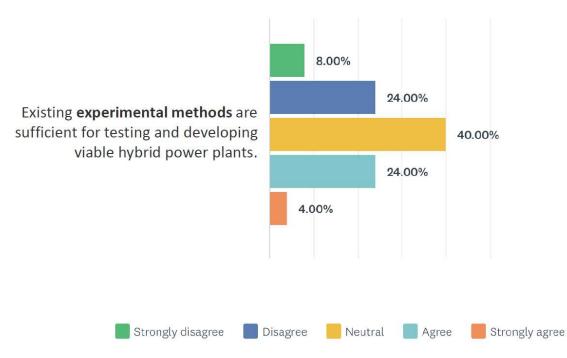

Objectives of HPP

- Rank based on importance of HPP being able to achieve the following
- Top responses:
 - Cost reduction: infrastructure
 - Grid services (freq support)

Main Barriers for HPP

- Rank 1 through 10
- Weighted average
- Top responses:
 - Demonstration of economic value
 - Lack of validation/verification data
 - Optimization and control tools

	•	1 •	2 🔻	3 👻	4 🔻	5 👻	6 👻	7 👻	8 👻	9 👻	10
•	Imbalance	0.00%	8.33%	4.17%	4.17%	4.17%	8.33%	41.67%	20.83%	4.17%	4.17%
	penalty red.	0	2	1	1	1	2	10	5	1	1
•	Balancing market revenue	0.00% O	4.00% 1	12.00% 3	16.00% 4	8.00% 2	0.00% O	4.00% 1	28.00% 7	24.00% 6	4.00% 1
•	Forward capacity markets	0.00% 0	0.00% 0	4.00% 1	4.00% 1	12.00% 3	12.00% 3	8.00% 2	12.00% 3	0.00% 0	44.00% 11
*	Cost: project	4.17%	12.50%	12.50%	8.33%	12.50%	16.67%	0.00%	25.00%	8.33%	0.00%
	development	1	3	3	2	3	4	O	6	2	0
•	Grid forming,	4.00%	16.00%	12.00%	4.00%	12.00%	32.00%	4.00%	0.00%	4.00%	8.00%
	islanded	1	4	3	1	3	8	1	0	1	2
•	Arbitrage	4.00% 1	12.00% 3	0.00% 0	0.00% O	8.00% 2	8.00% 2	16.00% 4	4.00% 1	28.00% 7	4.00% 1
•	Policy support schemes	4.00% 1	4.00% 1	0.00% 0	4.00% 1	4.00% 1	0.00% O	4.00% 1	0.00% 0	4.00% 1	4.00% 1
•	Cost: 0&M	8.00% 2	4.00% 1	16.00% 4	8.00% 2	12.00% 3	12.00% 3	8.00% 2	8.00% 2	12.00 <mark>%</mark> 3	12.00% 3
•	Load	8.33%	8.33%	16.67%	8.33%	12.50%	8.33%	8.33%	0.00%	8.33%	20.83%
	following	2	2	4	2	3	2	2	0	2	5
•	Freq, volt,	29.17%	16.67%	12.50%	12.50%	16.67%	0.00%	0.00%	0.00%	8.33%	0.00%
	black-start	7	4	3	3	4	0	O	0	2	0
•	Cost:	37.50%	12.50%	8.33%	29 .17%	0.00%	0.00%	8.33%	4.17%	0.00%	0.00%
	infrastructure	9	3	2	7	0	0	2	1	0	0


Most Promising Storage Technologies

- Lithium-ion
- Lead acid
- Flow battery
- Site-dependent
- Hydrogen
- Green Methane
- Fly-wheel
- CAES

- Redox flow
- Fuel cell
- Super capacitors
- Compressed air
- Heat storage
- Carnot batteries
- Pumped hydro storage
- Ultracapacitors

Current State of Hybrid Power Plants

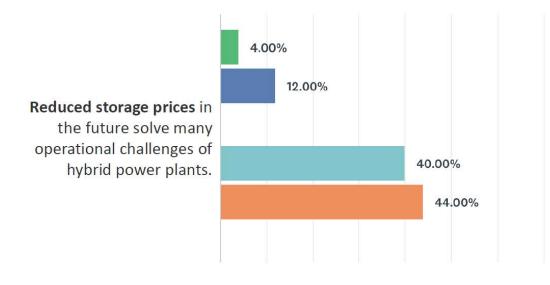
Experiments and Validation

We should prioritize collecting **experimental validation data** over other research priorities 12.00% 64.00%

Disagree

Neutral

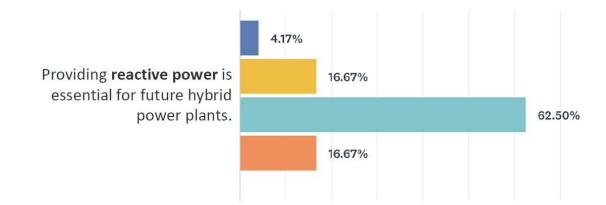
Agree


Strongly disagree

Strongly agree

Storage

Disagree


Neutral Agree

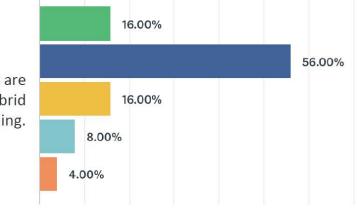
Strongly agree

Strongly disagree

Reactive Power

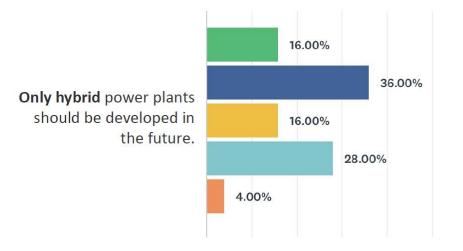
Disagree

Neutral 📃 Agree


Strongly agree

Strongly disagree

Market Design

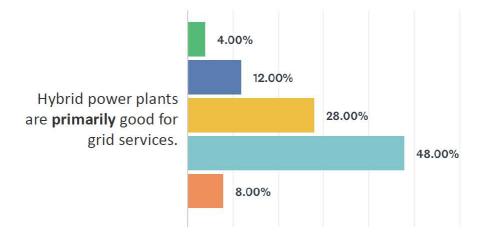


📕 Strongly disagree 🛛 📕 Neutral 📄 Agree 📕 Strongly agree

Hybrid versus Single Technology Plants

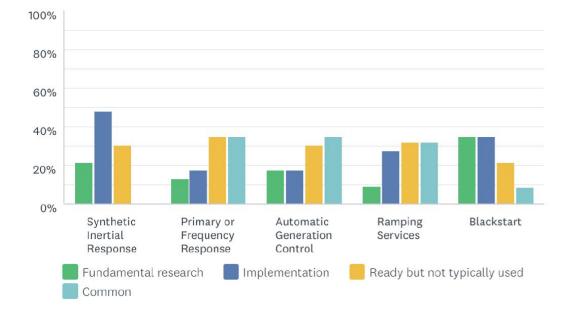
Disagree

Neutral


Agree

Strongly agree

Strongly disagree


Ancillary Services

Strongly agree

DTU

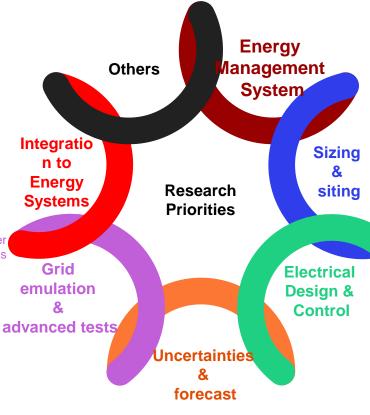
Grid Services

Danish Hybrid Wind Power Plant Forum (https://hybrid-vindenergi.dtu.dk/)

Others

- Wind turbine load and control and lifetime
- Storage lifetime assessment and control
- · Wind farms wakes and control
- Grid interaction and stability assessment
- Offshore applications

Integration to Energy Systems


- Co-operation with other energy sectors
- Power2X
- Co-ordinated Control
- Load Balancing

Grid emulation & advanced tests

- Emulation of future converter dominated power systems using CGI and / or synchnonus condenser to emulate grid
- Development of new test methods / grid codes
- Validation of models

Uncertainties and forecast

- Variability for combined wind-solar-storage
- Market forecasts
- Hybrid power forecast
- Real time power simulation
- Assessment of flexibility & grid services

Energy Management System

• Optimal operation on markets: energy markets, grid service markets and capacity markets considering uncertainties, component lifetime

Sizing and siting

- Resource assessment
- Physical Design Optimization
- Selection / hybridization of storage technologies
- Optimal sizing of wind-solar-storage
- Hybridization of existing wind or solar plants

Electrical Design and Control

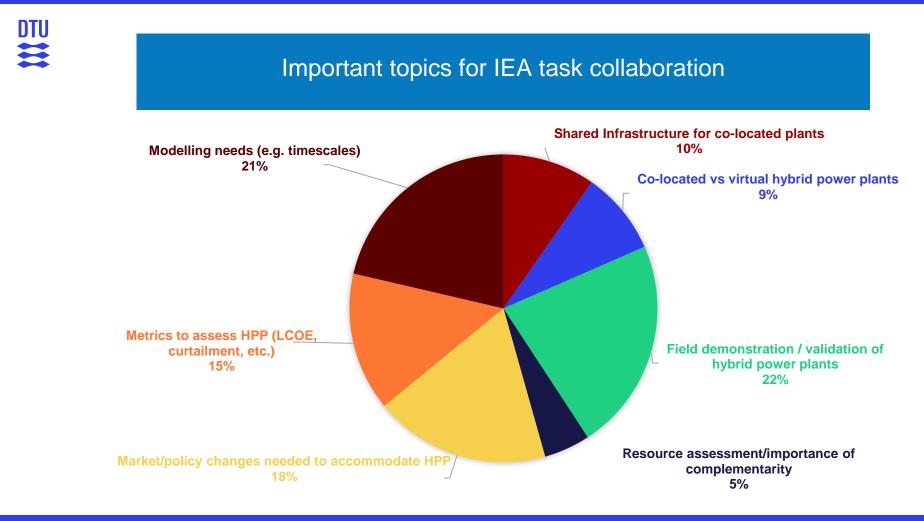
- Optimal electrical design utilization of wind turbine DC links and inverter
- Use of electrical auxiliaries (supercapacitor, chopper, FACTS)
- Hierarchical control / Distributed control
- Grid services
- Blackstart capability

Goal of the Topical Expert Meeting

Overall: Accelerate the development and deployment of hybrid power plants

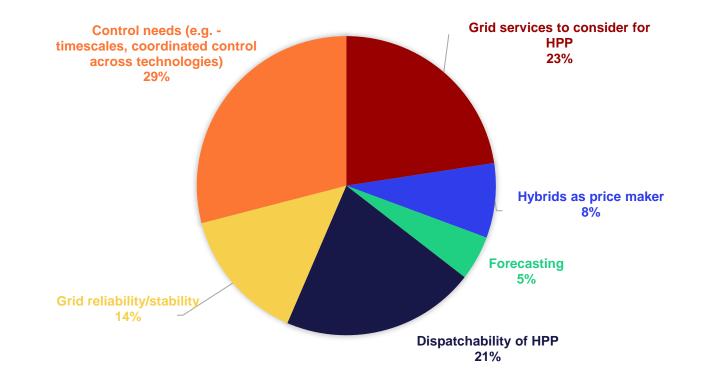
- What are our biggest roadblocks?
- Topical Experts Meeting (TEM): If this were to become an IEA Task
 - Determine areas of international collaboration
 - Determine the role of this task
- Critical Areas:
 - Benefits of hybrid power plants
 - Microgrids and control
 - Sizing/Optimization and Storage solutions

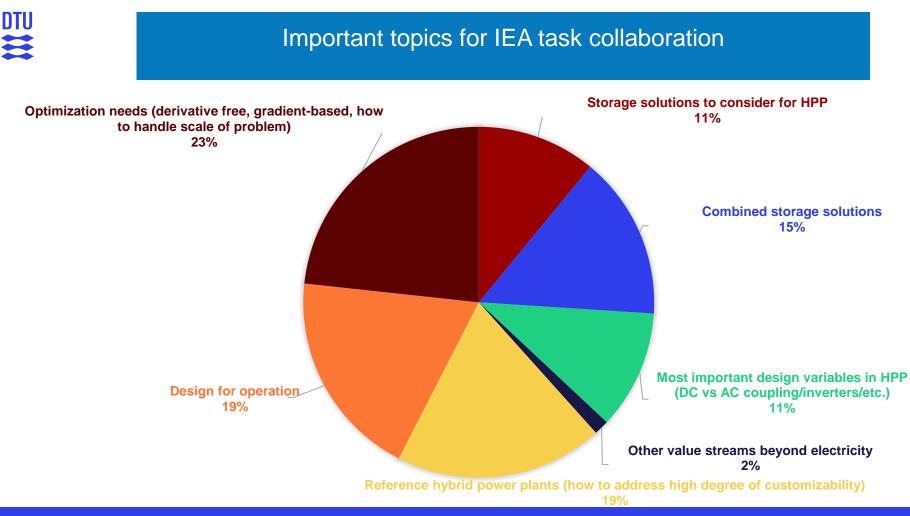
Future Hybrid Annual, seasonal, **Power Plants** daily variability Design Considerations: · Number, type, and operation of turbines · Number, type, and operation of solar Annual. panels seasonal. Number and type ۲¥daily of storage variations in · Overall layout of all market prices assets and topology and sizing of collection system Optimization objectives include plant profitability(net present value, payback period, etc)


Hybrid Power Plants (HPP): Topical Experts Meeting

To realize accelerate the deployment of hybrid power plants, important work to be done, which requires active involvement of the stakeholders: OEM, developers, owner/operators, consultants and researchers

Organized a virtual Topical Experts Meeting (TEM) in August 2020 to begin the process


Approximately 80 participants over 3 days from 18 countries



Important topics for IEA task collaboration

Ξ Important topics for IEA task collaboration Best practices in forecasting, etc. Field demonstrations information exchange/clearing 7% house **Review of standards for HPP and develop** 18% recommendations 12% Reference hybrid power plants development Investigations of HPP values in various contexts 24% 23% Workshops for sharing experiences/results/data 16%

DTU

Results of TEM

Question	Agree	Disagree
Only HPP should be developed in the future	40%	60%
Markets are sufficient for HPP participation	12%	72%
Providing grid services as an essential HPP capability	70%	30%
Prioritize experimental validation	76%	12%

Results from the TEM: Market Barriers

• Demonstration and economic value

• Lack of validation data

• Validated models

• Optimization, control, modeling tools

Basis for our work packages

Highest Impact Tasks for IEA Task

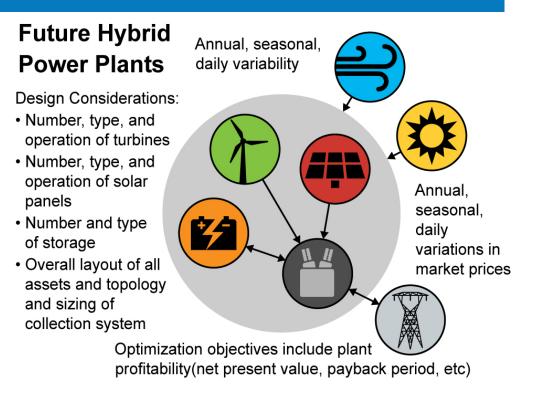
WP0: Management and coordination
WP1: Collection of research results, state-of-the-art and expert consensus
WP2: Design of a suite of reference hybrid plants
WP3: Overview of design and operation technology/algorithms
WP4: Electrical design, control, market and grid service provision from hybrid power plant
WP5: Outreach and Collaboration with other ongoing TCPs and industry R&D activities

Hybrid Power Plants: Moving Forward

Operating agents:

- Jennifer King, NREL (US)
- Kaushik Das, DTU (DK)

Expected budget:


• ~60.000 euro/year

Annual costs:

• 5.000 euro/year

Duration:

• 4 years

Thank You

