

5th International Hybrid Power Systems Workshop Virtual Session 3B - Forecasting 18 May 2021

Recommended Practice for Optimal Selection of Short-term Renewable Power Production Forecast Solutions

John W. Zack UL Services Group Albany, NY, USA john.zack@ul.com

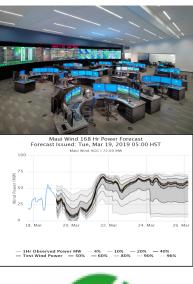
Corinna Mohrlen WEPROG Denmark com@weprog.com

Gregor Giebel DTU Denmark grgi@dtu.dk

Overview

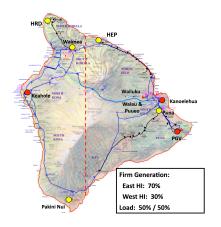
- 1. Background: The Problem and an Approach for a Solution
- 2. Overview: IEA Recommended Practice (RP) for Forecasting Solution Selection
- 3. Some Key Points from the RP Documents
- 4. Where to Get the More Information

The Problem


• Documented Benefits:

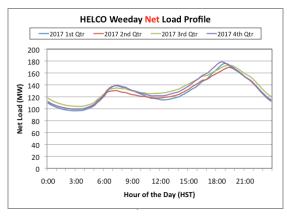
- lower costs of variable generation integration (system)
- high system reliability

• Problem:


A substantial amount of the potential value of forecasting is not realized due to the use of non-optimal forecast solutions by users

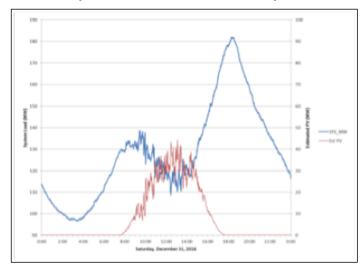
- o Specification of the wrong forecast performance objective(s)
- $\circ\,$ Poorly designed and executed benchmarks/trials of alternative solutions
- $\circ\,$ Use of non-optimal evaluation metrics for forecast evaluation

Misaligned Forecast Objectives: An Example from the "Big Island" of Hawaii SYSTEM OVERVIEW


Renewable Resource	Capacity
Geothermal (1 facility)	38 MW
Hydro (3 facilities)	16.2 MW
Wind (2 facilities)	31 MW
Solar (BTM Distributed)	90 MW

· Weekday Net load: 2 daily peaks

- Morning (~0800): 130-140 MW
 - Morning rise in gross load followed by morning rise in PV production
- Evening (~1800): 170-180 MW

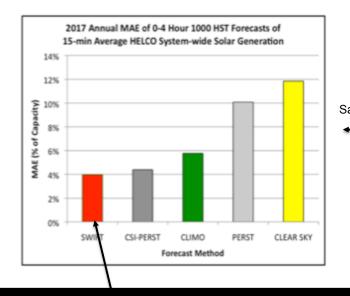

• Weekday Net load: 2 daily minima

- Nighttime (~0300): 95-105 MW
- Daytime (~1200): 115-125 MW
 - · Associated with peak of distributed PV

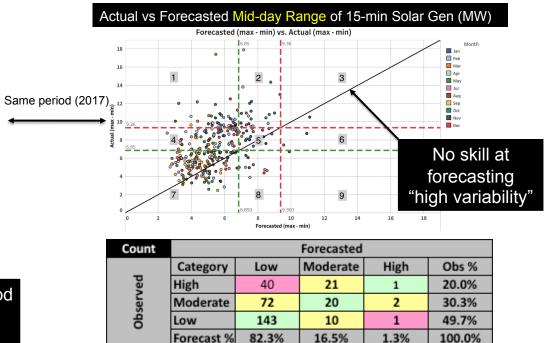
Misaligned Forecast Objectives: An Example from the "Big Island" of Hawaii WHAT THEY REQUESTED VS. WHAT THEY NEED

ISSUE: large mid-day net load variability driven by distributed PV variability

NEED: Mid-day (1000-1400) range of variability forecast (generation envelope)


• REQUESTED Forecast:

- Multi-method forecast (NWP, statistical, satellite cloud advection)
- Two Forecast Time Frames
 - Intra-day
 - 0-6 hrs ahead in 15-min time steps
 - 15-min updates
 - $\circ\,$ Multiple Day
 - 0-7 days ahead in 1-hr time steps
 - 1 hr updates


PROVIDED: Forecasts that minimize the squared error for every 15-min interval

Misaligned Forecast Objectives: An Example from the "Big Island" of Hawaii THE RESULT

Mean Absolute Error (or RMSE) looks good!

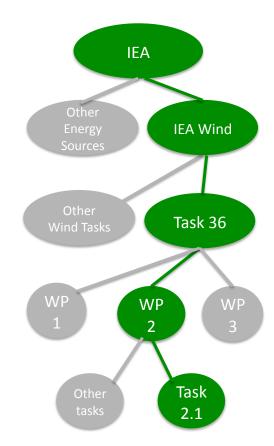
MAE for 0-4 hr forecasts for mid-day period is 4 % of Capacity and 15% lower than "smart persistence" Prediction of Variability is Inadequate for Decision-Making on Mid-day Reserves

6

To Address this Issue: International group of experts have interacted under the framework of IEA Wind Task 36 to formulate a set of documents that specify the "best practices" for selecting a renewable energy forecasting solution......

Background: What is IEA Wind and Task 36?

What is the IEA (International Energy Agency)? (www.iea.org)

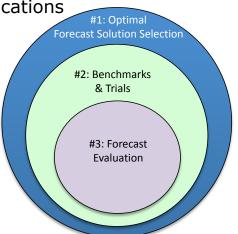

- International organization within OECD with 30 member countries and 8 associates
- Promotes global dialogue on energy, providing authoritative analysis through a wide range of publications
- "IEA Wind" IEA Wind Technology Collaboration Programme (IEA Wind TCP)
 One activity: convenes panels of experts to address specific topics/issues such as Task 36

Task 36: Forecasting for Wind Energy: (www.ieawindforecasting.dk)

- One of several ongoing Tasks of IEA Wind: https://community.ieawind.org/home
- Phase 1 started in 2016 for 3 years; Phase 2 began in 2019 for additional 3 years
- Operating Agent is Gregor Giebel of DTU Wind Energy
- · Objective: facilitate improvements in performance and value of wind energy forecasts

Task 36 Scope: Three "Work Packages"

- WP1: Global Coordination in Forecast Model Improvement
- WP2: Benchmarking, Predictability and Model Uncertainty
 - \odot Task 2.1: Recommended Best Practices for Forecast Solution Selection
- WP3: Usage of Probabilistic Forecasts and Scenarios


Result of the Task 36 WP2.1: Recommended Practices for the Selection of Renewable Energy Forecasting Solutions

3 Parts **Target:** Guidance for the optimal selection of renewable energy forecasting solutions for a wide range of user types and applications

Result: Set of 3 documents specifying IEA Wind Task 36 Recommended Practices for:

- **1.** Selection of an Optimal Forecast Solution
- **2.** Design and Execution of Benchmarks and Trials
- **3.** Evaluation of Forecasts and Forecast Solutions

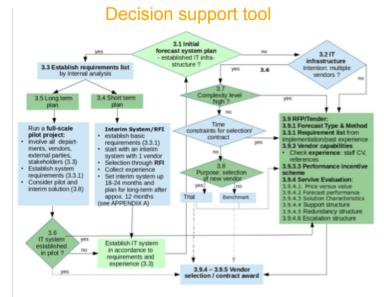
Current Status: Version 1 accepted by IEA Wind ExCo & published

Download: http://www.ieawindforecasting.dk/Publications/RecommendedPractice

Part 1: Selection of an Optimal Forecast Solution

- Presents an overview of the factors that should be considered in the solution selection process
- Discusses the issues associated with each selection factor
- Provides a "decision support tool" to assist users in the design and execution of a solution selection process
- Provides practical lists and FAQ's for the RFI/RFP tendering process

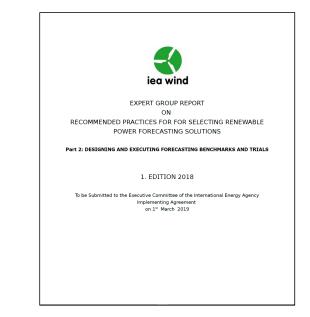
iea wind	
EXPERT GROUP REPORT	
ON	
RECOMMENDED PRACTICES FOR SELECTING RENEWABLE	
POWER FORECASTING SOLUTIONS	
Part 1: FORECAST SOLUTION SELECTION PROCESS	
1. EDITION 2018	
To be Submitted to the	
Executive Committee of the	
International Energy Agency Implementing Agreement	
on 1 st March 2019	



Part 1: Key Points

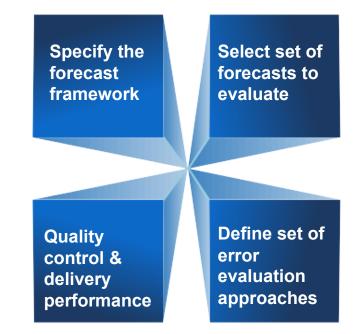
Issue: A <u>poorly</u> designed or executed benchmark or trial of alternative forecast solutions is more likely to lead to a less optimal selection than a selection process that clearly defines the problem to be solved

Advice: Part 1 provides a decision support tool for the design of a customized forecast solution selection process: <u>Remember: An optimal forecast solution needs</u>


careful formulation of the solution selection process, consistent with the problem size and the available expertise and resources

Part 2: Conducting a Benchmark or Trial

- Presents the three phases of a forecasting benchmark or trial
 - -Planning
 - -Execution
 - -Analysis
- Discusses the factors and issues that should be considered in each phase
- Provides a list of pitfalls to avoid



Part 2: Key Points

Issue: A benchmark or trial often fails to provide meaningful information to the solution selection process because it is poorly designed or executed and usually requires more resources than planned!

Advice: use the recommended practices guide and/or consult "unbiased" experts if you plan a benchmark or trial. If it becomes an academic exercise, it's expensive learning!

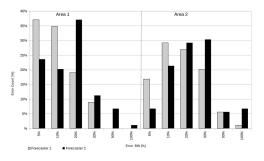
Part 3: Evaluation

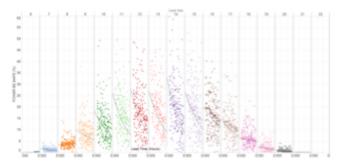
- Presents the three key attributes of an evaluation process
 - -Representativeness
 - -Significance
 - -Relevance
- Discusses the factors and issues that should be considered for each attribute
- Provides recommendations for conducting a high quality and meaningful evaluation

iea wind
EXPERT GROUP REPORT
ON RECOMMENDED PRACTICES FOR SELECTING RENEWABLE POWER FORECASTING SOLUTIONS
Part 3: Evaluation of Forecasts and Forecast Solutions
1. EDITION 2018
To be Submitted to the Executive Committee of the International Energy Agency Implementing Agreement on 1 st March 2019

Part 3: Key Points

Issues: Many attempts to evaluate the accuracy of alternative forecast solutions yield misleading information to a user's solution selection process because of failures in one or more of the 3 key attribute areas:


The most frequent and misunderstood mistake is with respect to "relevance"


- The user employs a set of accuracy metrics that are not appropriate, i.e. "not relevant" for the user's application
- Often accuracy assessments may give a good solution for someone else's problem, but not one's own problem!

Advice: put considerable effort into understanding and incentivising the problem solution before employing a forecast provider.

<u>Remember: Inappropriate metrics lead to wrong solutions!</u>

Where to Get More Information

WIW20 Paper

IEA Wind Task 36: Practical Application Examples from the Recommended Practices for Forecast Solution Selection

> John W Zack UL Services Group LLC Albany, NY, USA john.zack@ul.com

Corinna Möhrlen WEPROG Assesns, Denmark com@weprog.com

RP-related Publications

RP Documents:

http://www.ieawindforecasting.dk/ Publications/RecommendedPractice

2019 & 2020 Wind Integration Workshops

Paper in Proceedings Presentation

2019 & 2020 ESIG Workshops Presentations

YouTube Channel Webinar on Recommended Practices

