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Abstract— In this paper, two artificial intelligence based load 
prediction algorithms are presented, one of which achieves 
improved prediction performance compared to the standard 
method. It is also shown what results can be achieved when the 
algorithm is implemented in the open source energy 
management framework OpenEms. 
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I. INTRODUCTION

Generally Energy Management Systems (EMS) are needed to 
optimize the operation of energy systems. This is true for grid 
connected as well as for off-grid systems. The implemented 
EMS strongly differ in complexity depending on the purpose 
and the size of the corresponding energy system. Simple EMS 
just control view components and are giving set-points for the 
current time step. In a system including a photovoltaic system 
(PV) and an electrical storage system (ESS) this can be the 
maximization of the PV self-consumption by charging the 
ESS if excess energy is available and discharging the battery 
when there is an energy deficiency. 

More sophisticated EMS systems include scheduling 
algorithms. That means that the optimal setpoints for the 
components are calculated for a future period of time (e.g. 15 
hours). The calculation of the future schedules can be updated 
continuously such that changing system states and updated 
predictions can be included. Such strategies are also referred 
to as Model Predictive Control (MPC). 

To create a schedule for a future time period predictions 
are needed for the energy production and for the energy 
consumption of the system. The quality of these predictions 
determine the quality of the schedule. PV predictions are 
commercially available in a high quality and can be included 
in EMS platforms via APIs.  

A reliable load prediction on the other hand is more 
challenging because every energy system is different in terms 
of components and the usage of these components strongly 
depends on user behavior and e.g. specific industrial 
processes. A reasonable approach is to use monitoring data to 

learn something about the behavior of the system. An often 
applied approach is to use a combination of the monitored 
data of the day before and from the same day in the last weeks 
and to calculate the load prediction from these values. But 
these simple approaches often have a low prediction 
accuracy. To receive better results we used two different 
approaches in this work to calculate the load prediction with 
the help of Deep Neural Networks (DNN). 

We structured the paper as follows. We first describe the 
three approaches that we used for the load prediction. We 
then describe the example energy system for that these load 
predictions were tested. Subsequently we describe the 
software platform OpenEMS in which the load prediction 
was implemented. Then the simulation procedure is 
explained. Part of this implementation was also a procedure 
to calculate the schedule for the next 15 hours that will also 
be described here. Finally the results are presented. 

II. LOAD PREDICTION METHODS

Two different DNN based load prediction concepts were 
developed that will be explained in the following. These were 
compared to a standard benchmark prediction method that is 
also explained in this section. 

The dataset that we use for the training of both models 
consists of load data from 114 American single-family 
households and weather data. The households were metered 
from late 2014 - 2016 and contain load power in resolution of 
one or fifteen minutes. The weather data contains information 
about temperature, precipitation probability, cloudiness, 
visibility and other and was recorded throughout the same 
period and for the location of the households. The data set can 
be found online at [1], we choose this set because of its 
comprehensive size and public availability. Its resolution of 1 
to 15 minutes is more than su_cient for our application as the 
load forecasting that we implement does not need higher 
resolution input loads than of one hour intervals. 
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A. NN-F 

The first model is called NN-F, which stands for “Neural 
Network Forecast”. The choices made for topology, training 
and hyperparameters are examined in the following. 

Architecture 

There are various neural network architectures possible 
for regression estimation like load forecasting. That includes 
feedforward neural networks, recurrent neural networks 
(RNN) and especially long short-term memory (LSTM) 
networks. 

LSTM networks are specialized RNN that have proven 
powerful in recent literature for short-term load forecasting, 
too [2], [3]. Testing their aptitude for STLF without 
individual building training data remains open for future 
work. In this work, for practical reasons, we choose the 
standard feedforward architecture of ANN. The topology of 
NN-F consists of one input, one output and five hidden layers. 
The input neurons are listed in the table 1.  

TABLE 1: SPECIFICATION OF THE INPUT NEURONS 
 Number of input neurons 

Loads of 7 last days 168 

Loads of last 15 hours of same 
day 2, 3 and 4 weeks ago 45 

4 weather inputs for the next 
15 hours 60 

Weekday and hour of day 2 

Sum: 275 

 

The hidden layers contain 150 neurons each. The output 
layer contains 15 continuous values that represent the 15 
hours of forecast time span. 

We choose this topology to allow the detection of 
complex relations between input and output while also 
keeping the complexity relative to the size of our data. Given 
that we train on a data set that contains single-family 
households that are located in relative proximity we have to 
take into account that we only cover a certain subset of 
consumer types. This reduces the representativeness of our 
data. We pretend that this subset of the problem of load 
forecasting is equal to the superset. On that assumption the 
complexity of our problem of consideration is reduced. This 
makes our model more vulnerable to overfitting, which is 
why we do not want it to look for too precise and most likely 
only individually valid correlations. The model depth is only 
a small contributing factor to the problem of overfitting, 
though. This has to be recognized in training, too. 

Next is the choice of activation functions. In the output 
layer, we are restricted to continuous functions as we expect 
a continuous output value for each of the 15 output neurons 
representing the hourly loads. The ReLu function meets this 
criterion and furthermore limits the output to values equal to 
or greater null. This makes sense in the context of application 
as load values cannot be negative either. The activation 
functions of all other layers can be chosen freely. We opt for 
ReLu in all layers. Very important for the successful training 
and left to choose is the loss function. In testing different loss 

function we come to the conclusion that the common losses 
like MSE, RMSE or MAE do not fit our problem. These loss 
functions display the average deviation between discrete load 
values. This results in an approximation that has only few 
high discrete errors but many errors of medium height and 
only few sufficiently low errors. Therefore, the approximated 
energy volume is very accurate, but the approximated load 
curve is rather flat. 

The flat load curve is undesirable because it does not 
display the momentary progression. To target this problem, 
we design the following custom loss function MSGE. 

𝑀𝑆𝐺𝐸(𝑦, 𝑦 ∗, 𝑤) = (1 − 𝑤)
1
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MSGE stands for “Means Square Gradient Error”. It is a 
modified MSE that adds a term to capture the curve gradients 
more actively. Besides the average squared discrete errors it 
penalizes missing the change of gradient. We achieve this by 
calculating the mean of discretized first derivates. We weight 
both terms with w = 0.5. 

Training 

NN-F is trained on the full data set of 114 households and 
weather. Necessary before training is finding the right 
partitioning of training and test data set. It is desirable to use 
as many data samples as possible for the training of the model 
to fully utilize the data on the one hand. On the other hand, 
the test data share must be of sufficient size to allow a 
meaningful evaluation. Accurate evaluation of the model 
benefits the optimization process 

of it. Therefore, we must find a reasonable compromise. 
We opt for a fixed 

share of 5/6 of each household of the whole set for 
training data. This leaves 1/6 in each household for testing. 

At this point it is possible to scale or standardize the data, 
e.g. map to a fixed interval. This can make sense if the data 
varies in scale. In our case, this is not needed. The actual 
training is performed in 8 full iterations of all training samples 
(epochs).  

Implementation 

We implement NN-F inside the machine learning 
framework Keras. Keras is a standardized Python interface 
for different machine learning libraries. In this case we use 
Keras with TensorFlow, an ML and particularly deep neural 
network library. See [4] for documentation of TensorFlow 
and [5] for documentation of Keras. This allows us to draw 
on a comprehensive set of implemented high-level functions 
that allow the design of neural networks. 

B. P2NN-F 

The second model that we propose is P2NN-F, which 
stands for “Profiler To Neural Network Forecast”. This novel 
forecasting model aims to increase the accuracy further. It 
will be introduced in the following with focus on the 
conceptual choices that we make. 
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Concept 

The basic idea of P2NN-F is to identify consumer types 
and assign new customers to one of these types before the 
forecast is made. Having classified a household correctly, we 
want to be able to create a more customized forecast, that is 
thus more accurate. For that we train a specialized ANN for 
each consumer type. 

This idea is founded on the assumption that separable 
consumer types exist in small-size households. In practice 
there often form distinct groups of similar consumer habits 
and behavioral patterns of consumption, which is why user 
behavior can be categorized in many application fields. See 
[6] for an example about the clustering of the usage of 
refrigerators. 

Architecture 

P2NN-F consists of two parts, clustering and forecasting. 
In the first part we introduce the clustering. The forecasting 
is subject of the second part. And the choices of model 
hyperparameters are explained in the third part. 

Clustering 

To identify consumer types, we cluster the whole data set 
into k load profiles. As clustering algorithm we choose k-
Means because it is both efficient and simple. Its simplicity 
allows an intuitive understanding and helps us optimize input 
choices and other impactful decisions in the context of the 
model. Kmeans is depicted in subsection 2.2.5. The inputs for 
this clustering are obtained as follows. We split the load data 
of every household into one day sequences. One such 
sequence is constructed as the mean of all 5 loads of working 
days in a week, from Monday to Friday. By that, we try to 
identify the typical working day consumption profile of the 
respective household. Weekend days are left out as they differ 
significantly from working days in many households. 

In this approach we make assumptions that are based on 
simple everyday observations. This has to be kept in mind. 
For practical reasons, the averaged days are normalized. Each 
day is mapped to the interval [0; 1]. This ensures 
comparability between all sequences. A consequence of this 
solution is that every household contributes a number of 
averaged clustering days to the pool of clustering sequences. 
Therefore, a profile can contain sequences from many 
different or possibly all households. But we only want to take 
the data into the training data pool of a specialized ANN that 
represents the respective consumer type. For that reason we 
define a limit to take in only the first n households in a list 
ranked by contributions of sequences made to the profile. 

To assign a new household to a profile, we consider 4 
weeks of continuous loads. From that we obtain 4 averaged 
input days that we align to the previously clustered profiles. 
We then choose the profile with the most matches. 

The choice of 4 weeks allows us to have multiple days to 
cluster while staying inside the time frame of one month 
needed before the model can be applied. This time frame is 
necessary for the forecasting, too. 

Forecasting 

The second part in P2NN-F is the actual forecasting. For 
each of the k profiles, we train a neural network. The topology 
of the networks is similar to NN-F with equal input and output 
vectors but only 3 hidden layers. We choose the model's depth 

smaller to pay respect to the fact that - for each individual 
ANN - the available training size is much smaller. The loss 
function and the activation functions are the same as in NN-
F. 

Choices of model hyperparameters 

The first hyperparameter left to choose is the number of 
profiles or clusters k. We choose k = 6 for following reasons. 
With increasing k, the sum of squared distances is strictly 
monotonically decreasing until k equals the number of inputs. 
In that case it is null. Therefore we do not look for the k that 
minimizes the sum of squared distances but for the one that is 
the smallest possible that produces a sufficiently small sum 
of squared distances. The term sufficiently is - of course - 
relative and application dependent. 

We identify the interval [4; 7] as the sweet spot of already 
lowering the sum of squared distances significantly compared 
to lower values of k and at the same not being significantly 
worse than higher ones. The other reason for choosing k = 6 
is a graphical comparison of k's in that interval regarding their 
produced cluster centers.  

We choose n = 30 for the following reasons. n should 
neither be too small so that the forecaster lacks data nor be 
too big so that the intersection between the data pools of all 
forecasters is too big. 

In the latter case we run the risk of creating forecasters 
that generalize too much due to having too many different 
input loads of different types of consumers when optimally it 
would only have loads of the very same consumer type. That 
would lead to forecasters that are too similar to each other. 

And this would contradict the formulated goal of 
implementing specialized forecasters fundamentally and 
must therefore be avoided at all cost. In the case that n is too 
small, another side effect is that there remain households that 
are taken into no data pool of a forecast. This reduces the 
eventual forecasting quality of the model potentially if we 
forecast loads of households that are not taken into training of 
any profile. With n = 30 we hope to find a compromise in that 
conflict of interests. For this choice of n we observe a 
representativeness score of little over 90%, which refers to 
the share of households taken into data pool of at least one 
forecaster. 

Training 

By the training of P2NN-F we refer to the training of the 
6 forecasters that the model contains. For the household data 
of each forecaster we select the same training partition as in 
NN-F. This will important later on. Like in the training of 
NN-F, we do not need to scale the load input data. The 
training of P2NN-F is also performed in 6 iterations of the full 
training data pool. 

Implementation 

The framework for the implementation of the neural 
networks is the same as with NN-F. For k-Means, we rely on 
the Scikit-learn implementation of Lloyd's algorithm or k-
Means. See [7] for details of the of the Scikit-learn library. 

C. Benchmark Forecast SW-F 

To compare the proposed models of this work, a 
benchmark model is needed. Such benchmark model is 
ideally both well performing and simple, that is easy to (re-) 
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implement. In [8], the authors give an overview and 
comparison of  simple load forecasting models. Regarding 
MAE and MAPE, best performing is a statistical method that 
takes in the last k same weekdays of load, weights them and 
calculates their mean. Based on this, we implement a model 
that we call SW-F, which stands for same weekday forecast. 
To get a comparable output of cardinality 15, we expect an 
output in the form 𝑦 =  (𝑦0;  … ; 𝑦23). Let loads of the same 
week day n weeks ago be 𝑥𝑛  =  (𝑥𝑛0;  … ; 𝑥𝑛23), weights 
𝑤 =  (𝑤1;  … ; 𝑤𝑘)  and all considered same weekdays 
together be 𝑥 =  (𝑥1;  … ; 𝑥𝑘), then we define 

𝑆𝑊𝐹(𝑥) = (𝑦0, … , 𝑦23), 𝑦𝑖 =
1

𝑘
∑ 𝑥𝑛𝑖𝑤𝑛

𝑘

𝑛=1

 

SW-F makes use of the strong correlation between past 
same weekdays and the day of forecast. Additionally, all days 
considered are weighted. This comes from the fact that not 
every past day has the same inuence to the day of forecast. To 
implement SW-F, we have to start by choosing an according 
K. As we previously chose the maximum range of 
consideration of past days to be of 28 days, we choose K to 
be 4. This means we take days of 7, 14, 21 and 28 days ago 
into consideration. Lastly, we have to choose weights. 
Usually, more recent days have a higher inuence on the day 
of forecast than later ones. To express that observation, we 
choose w = (0.5; 0.2; 0.2; 0.1). Our benchmark forecast model 
is thereby finished. 

 

III. SYSTEM SETUP AND SIMULATION CONCEPT 
On the one hand we want to evaluate the quality of the 

before presented load prediction algorithms and on the other 
hand we want to see how they perform when they are 
implemented into a real EMS. The first part is done by 
comparing the two neural network predictors to the 
benchmark predictor.  

For the second part a simple energy system was chosen 
that consists of the entities battery (5 kWH), load, PV system 
(6 kWp), the grid and the energy management system. As an 
example, it shall be assumed that the PV system may only 
feed in 70% of its nominal power. If the power is above this 
limit, the power is curtailed resulting in financial losses. 
These specifications correspond to the current regulation by 
the German EEG 2021 for PV systems up to 25 kWp.  

To avoid this effect a corresponding schedule can be 
calculated that leaves enough free capacity in the ESS to take 
over the peak power of the PV-system. The corresponding 
elements that the EMS needs to include can be seen in Figure 
1. 

 

Figure 1: Important elements of the EMS 

Central to the setup is the feed-in delimiter FID-VL, 
which is described in detail in [9]. We use the virtual limit 
operation strategy to measure the performance of the two 
proposed forecasting models and the benchmark method. 

This strategy requires a forecast of PV production, current 
measurements of active production and load, the current 
battery state of charge (SoC) and finally - and most 
importantly for us - one of the three available load forecasts. 

To be able to evaluate each of the proposed models 
individually too and to relate them towards a lower boundary, 
we also want to evaluate the feed-in delimiting without 
forecasts. For this we use the simple feed-in delimiting 
strategy of FID-VL. Additionally, to relate our findings 
towards the upper boundary, we perform the simulation with 
a perfect load forecast. This displays the maximum possible 
performance. 

The electrical connection of the components is depicted 
in Figure 2. It is also indicated that for the hardware setup of 
the system not all the components were actually added but 
that only the battery and the inverter were really installed 
while the other components were simulated inside the EMS 
framework.  

The EMS that we use to integrate our load forecasting 
solutions into is Open-EMS. OpenEMS is an open source 
EMS for PV storage systems in residential buildings written 
in Java. It supports a great number of hardware components 
that are relevant for PV storage systems. It features on-board 
implementations of communication protocols like Modbus 
and Mbus and is easily expandable due to its flexible and 
dynamic modular architecture. The architecture and 
communication in OpenEMS derives from the usage of the 
OSGi framework, which defines a dynamic component 
system [10]. This is important for the practical feasibility. 
Furthermore, it features built-in simulation entities like 
battery and PV simulators and allows to connect to time-
series databases for exterior inputs. For details and 
documentation of OpenEMS see [11]. 
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Figure 2: Components of the investigated energy system. The 

dashed line indicates the components that were simulated. 

IV. RESULTS 

A. Results for the load prediction algorithms 

 
In the following, we evaluate NN-F and P2NN-F 

regarding their error minimization performance. We explain 
the evaluation of the two models separately, as they differ in 
their prerequisites and concepts. 

The evaluation of NN-F is straightforward. We now make 
use of the testing data that we extracted. We let our model 
predict loads for all testing samples and measure the 
respective deviations from the expected (or actual) loads. 
This requires only the selection of error metrics. We choose 
MSGE, RMSE and MAE. 

For P2NN-F, we must test each household individually. 
For each of the households, we let the model choose the 
forecaster on basis of a continuous load series out of the time 
span of the test data partition. Then, it can output its forecast 
for all test samples of the test data of that household. We then 
average the results of each evaluation. In Table 2 we list 
performance estimations of all three forecasts evaluated on 
the same test data. 

TABLE 2 
 MSGE MSE 

(kW )  
MAE 
(kW ) 

MAPE 
(%) 

NN-F  0.558 0.443 0.422 184 

P2NN-F  0.582 0.474 0.442 206 

SW-F 0.749 0.677 0.533 232 

 

The results indicate that the best performing model is NN-
F. Compared to SW-F, NN-F reduces MSGE by 26%, MSE 
by 35% and MAE by 21% or an averaged total of 111 W. 
SW-F itself still performs very well for its complexity. That 
is different with P2NN-F. Although it outperforms SW-F in 

all considered error metrics too, it is clear that P2NN-F cannot 
reach the precision of NN-F. 

This is surprising given the additional model complexity 
of P2NN-F. In the design of P2NN-F, we aim for a more 
precise and individualized forecast of a household. We expect 
the clustering to hand over to each forecaster only the type of 
households that it has been trained with. Apparently, the 
clusters are not dense enough to separate consumer types. The 
alignment of new households towards one of the 6 clustered 
profiles cannot sufficiently fulfil the task of profiling. The 
reason for that could lie in the data pool or the clustering and 
alignment approach or both. If the data pool does not yield 
significantly different consumer types, the model cannot 
work. But it is also possible that the alignment approach of 
new households is not accurate enough. Analyzing the exact 
problems and optimizing the model parameters could be an 
interesting subject for future work. 

B. Results for system simulation 

The averaged saving per month and household for the 
three forecasting models and the execution of FID-VL with a 
perfect forecast are shown in Figure 3. It has to be noted that 
these findings are not directly transferable to practice. The 
simulation setup simplifies in using a perfect PV forecast and 
disregarding electric conversion losses. Also, the monetary 
evaluation is primarily for an intuitive comparison and is only 
meaningful in the context of the underlying simulation 
parameters. 

While the perfect forecast is able to save an average of 
470 ct, NN-F saves an average of 435 ct - only 7% less. 
Because of the high amount of energy saved from curtailing, 
SW-F achieves an averaged saving of 420 ct. Lastly, P2NN-
F saves an average of 386 ct. 

 
Figure 3: Averaged savings per months for the different load 

prediction algorithms compared to the perfect prediction 

V. CONCLUSION 
In this work we presented two DNN based load forecast 

concepts of which one performed better than a comparable 
algorithm that is based on a standard “same day” approach. 
The load prediction was included into an EMS that controlled 
a simulated energy system with the aim to reduce curtailment 
due to a violation of the 70% feed in limit. As EMS platform 
the open source framework OpenEMS was used. The results 
of the system simulation also showed a reduction of the 
overall curtailment losses when the improved load forecaster 
was used. The OpenEMS implementation developed in the 
framework of this work can now be easily tested on a real 
world system. 

 

Simulated
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