
Development of an AI based Load Prediction

Algorithm and its Implementation into an Open Source

Energy Management System

Nils Reiners
Electrical Energy Storage Division

Fraunhofer Institute for Solar Energy Systems (ISE)
Freiburg, Germany

nils.reiners@ise.fraunhofer.de

Eric Schüftan
Computer Science Department

University of Münster
Münster, Germany

Abstract— In this paper, two artificial intelligence based load
prediction algorithms are presented, one of which achieves
improved prediction performance compared to the standard
method. It is also shown what results can be achieved when the
algorithm is implemented in the open source energy
management framework OpenEms.

Keywords-artificial intelligence; neural network; load

prediction; energy management system; openems

I. INTRODUCTION

Generally Energy Management Systems (EMS) are needed to
optimize the operation of energy systems. This is true for grid
connected as well as for off-grid systems. The implemented
EMS strongly differ in complexity depending on the purpose
and the size of the corresponding energy system. Simple EMS
just control view components and are giving set-points for the
current time step. In a system including a photovoltaic system
(PV) and an electrical storage system (ESS) this can be the
maximization of the PV self-consumption by charging the
ESS if excess energy is available and discharging the battery
when there is an energy deficiency.

More sophisticated EMS systems include scheduling
algorithms. That means that the optimal setpoints for the
components are calculated for a future period of time (e.g. 15
hours). The calculation of the future schedules can be updated
continuously such that changing system states and updated
predictions can be included. Such strategies are also referred
to as Model Predictive Control (MPC).

To create a schedule for a future time period predictions
are needed for the energy production and for the energy
consumption of the system. The quality of these predictions
determine the quality of the schedule. PV predictions are
commercially available in a high quality and can be included
in EMS platforms via APIs.

A reliable load prediction on the other hand is more
challenging because every energy system is different in terms
of components and the usage of these components strongly
depends on user behavior and e.g. specific industrial
processes. A reasonable approach is to use monitoring data to

learn something about the behavior of the system. An often
applied approach is to use a combination of the monitored
data of the day before and from the same day in the last weeks
and to calculate the load prediction from these values. But
these simple approaches often have a low prediction
accuracy. To receive better results we used two different
approaches in this work to calculate the load prediction with
the help of Deep Neural Networks (DNN).

We structured the paper as follows. We first describe the
three approaches that we used for the load prediction. We
then describe the example energy system for that these load
predictions were tested. Subsequently we describe the
software platform OpenEMS in which the load prediction
was implemented. Then the simulation procedure is
explained. Part of this implementation was also a procedure
to calculate the schedule for the next 15 hours that will also
be described here. Finally the results are presented.

II. LOAD PREDICTION METHODS

Two different DNN based load prediction concepts were
developed that will be explained in the following. These were
compared to a standard benchmark prediction method that is
also explained in this section.

The dataset that we use for the training of both models
consists of load data from 114 American single-family
households and weather data. The households were metered
from late 2014 - 2016 and contain load power in resolution of
one or fifteen minutes. The weather data contains information
about temperature, precipitation probability, cloudiness,
visibility and other and was recorded throughout the same
period and for the location of the households. The data set can
be found online at [1], we choose this set because of its
comprehensive size and public availability. Its resolution of 1
to 15 minutes is more than su_cient for our application as the
load forecasting that we implement does not need higher
resolution input loads than of one hour intervals.

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021

A. NN-F

The first model is called NN-F, which stands for “Neural
Network Forecast”. The choices made for topology, training
and hyperparameters are examined in the following.

Architecture

There are various neural network architectures possible
for regression estimation like load forecasting. That includes
feedforward neural networks, recurrent neural networks
(RNN) and especially long short-term memory (LSTM)
networks.

LSTM networks are specialized RNN that have proven
powerful in recent literature for short-term load forecasting,
too [2], [3]. Testing their aptitude for STLF without
individual building training data remains open for future
work. In this work, for practical reasons, we choose the
standard feedforward architecture of ANN. The topology of
NN-F consists of one input, one output and five hidden layers.
The input neurons are listed in the table 1.

TABLE 1: SPECIFICATION OF THE INPUT NEURONS
 Number of input neurons

Loads of 7 last days 168

Loads of last 15 hours of same
day 2, 3 and 4 weeks ago 45

4 weather inputs for the next
15 hours 60

Weekday and hour of day 2

Sum: 275

The hidden layers contain 150 neurons each. The output
layer contains 15 continuous values that represent the 15
hours of forecast time span.

We choose this topology to allow the detection of
complex relations between input and output while also
keeping the complexity relative to the size of our data. Given
that we train on a data set that contains single-family
households that are located in relative proximity we have to
take into account that we only cover a certain subset of
consumer types. This reduces the representativeness of our
data. We pretend that this subset of the problem of load
forecasting is equal to the superset. On that assumption the
complexity of our problem of consideration is reduced. This
makes our model more vulnerable to overfitting, which is
why we do not want it to look for too precise and most likely
only individually valid correlations. The model depth is only
a small contributing factor to the problem of overfitting,
though. This has to be recognized in training, too.

Next is the choice of activation functions. In the output
layer, we are restricted to continuous functions as we expect
a continuous output value for each of the 15 output neurons
representing the hourly loads. The ReLu function meets this
criterion and furthermore limits the output to values equal to
or greater null. This makes sense in the context of application
as load values cannot be negative either. The activation
functions of all other layers can be chosen freely. We opt for
ReLu in all layers. Very important for the successful training
and left to choose is the loss function. In testing different loss

function we come to the conclusion that the common losses
like MSE, RMSE or MAE do not fit our problem. These loss
functions display the average deviation between discrete load
values. This results in an approximation that has only few
high discrete errors but many errors of medium height and
only few sufficiently low errors. Therefore, the approximated
energy volume is very accurate, but the approximated load
curve is rather flat.

The flat load curve is undesirable because it does not
display the momentary progression. To target this problem,
we design the following custom loss function MSGE.

𝑀𝑆𝐺𝐸(𝑦, 𝑦 ∗, 𝑤) = (1 − 𝑤)
1

𝑛
∑(𝑦𝑖

∗ − 𝑦𝑖)2

𝑛

𝑖=1

+ 𝑤
1

𝑛 − 1
∑(𝑦𝑖 − 𝑦𝑖−1)

𝑛

𝑖=2
− (𝑦𝑖

∗ − 𝑦𝑖−1
∗)2

MSGE stands for “Means Square Gradient Error”. It is a
modified MSE that adds a term to capture the curve gradients
more actively. Besides the average squared discrete errors it
penalizes missing the change of gradient. We achieve this by
calculating the mean of discretized first derivates. We weight
both terms with w = 0.5.

Training

NN-F is trained on the full data set of 114 households and
weather. Necessary before training is finding the right
partitioning of training and test data set. It is desirable to use
as many data samples as possible for the training of the model
to fully utilize the data on the one hand. On the other hand,
the test data share must be of sufficient size to allow a
meaningful evaluation. Accurate evaluation of the model
benefits the optimization process

of it. Therefore, we must find a reasonable compromise.
We opt for a fixed

share of 5/6 of each household of the whole set for
training data. This leaves 1/6 in each household for testing.

At this point it is possible to scale or standardize the data,
e.g. map to a fixed interval. This can make sense if the data
varies in scale. In our case, this is not needed. The actual
training is performed in 8 full iterations of all training samples
(epochs).

Implementation

We implement NN-F inside the machine learning
framework Keras. Keras is a standardized Python interface
for different machine learning libraries. In this case we use
Keras with TensorFlow, an ML and particularly deep neural
network library. See [4] for documentation of TensorFlow
and [5] for documentation of Keras. This allows us to draw
on a comprehensive set of implemented high-level functions
that allow the design of neural networks.

B. P2NN-F

The second model that we propose is P2NN-F, which
stands for “Profiler To Neural Network Forecast”. This novel
forecasting model aims to increase the accuracy further. It
will be introduced in the following with focus on the
conceptual choices that we make.

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021

Concept

The basic idea of P2NN-F is to identify consumer types
and assign new customers to one of these types before the
forecast is made. Having classified a household correctly, we
want to be able to create a more customized forecast, that is
thus more accurate. For that we train a specialized ANN for
each consumer type.

This idea is founded on the assumption that separable
consumer types exist in small-size households. In practice
there often form distinct groups of similar consumer habits
and behavioral patterns of consumption, which is why user
behavior can be categorized in many application fields. See
[6] for an example about the clustering of the usage of
refrigerators.

Architecture

P2NN-F consists of two parts, clustering and forecasting.
In the first part we introduce the clustering. The forecasting
is subject of the second part. And the choices of model
hyperparameters are explained in the third part.

Clustering

To identify consumer types, we cluster the whole data set
into k load profiles. As clustering algorithm we choose k-
Means because it is both efficient and simple. Its simplicity
allows an intuitive understanding and helps us optimize input
choices and other impactful decisions in the context of the
model. Kmeans is depicted in subsection 2.2.5. The inputs for
this clustering are obtained as follows. We split the load data
of every household into one day sequences. One such
sequence is constructed as the mean of all 5 loads of working
days in a week, from Monday to Friday. By that, we try to
identify the typical working day consumption profile of the
respective household. Weekend days are left out as they differ
significantly from working days in many households.

In this approach we make assumptions that are based on
simple everyday observations. This has to be kept in mind.
For practical reasons, the averaged days are normalized. Each
day is mapped to the interval [0; 1]. This ensures
comparability between all sequences. A consequence of this
solution is that every household contributes a number of
averaged clustering days to the pool of clustering sequences.
Therefore, a profile can contain sequences from many
different or possibly all households. But we only want to take
the data into the training data pool of a specialized ANN that
represents the respective consumer type. For that reason we
define a limit to take in only the first n households in a list
ranked by contributions of sequences made to the profile.

To assign a new household to a profile, we consider 4
weeks of continuous loads. From that we obtain 4 averaged
input days that we align to the previously clustered profiles.
We then choose the profile with the most matches.

The choice of 4 weeks allows us to have multiple days to
cluster while staying inside the time frame of one month
needed before the model can be applied. This time frame is
necessary for the forecasting, too.

Forecasting

The second part in P2NN-F is the actual forecasting. For
each of the k profiles, we train a neural network. The topology
of the networks is similar to NN-F with equal input and output
vectors but only 3 hidden layers. We choose the model's depth

smaller to pay respect to the fact that - for each individual
ANN - the available training size is much smaller. The loss
function and the activation functions are the same as in NN-
F.

Choices of model hyperparameters

The first hyperparameter left to choose is the number of
profiles or clusters k. We choose k = 6 for following reasons.
With increasing k, the sum of squared distances is strictly
monotonically decreasing until k equals the number of inputs.
In that case it is null. Therefore we do not look for the k that
minimizes the sum of squared distances but for the one that is
the smallest possible that produces a sufficiently small sum
of squared distances. The term sufficiently is - of course -
relative and application dependent.

We identify the interval [4; 7] as the sweet spot of already
lowering the sum of squared distances significantly compared
to lower values of k and at the same not being significantly
worse than higher ones. The other reason for choosing k = 6
is a graphical comparison of k's in that interval regarding their
produced cluster centers.

We choose n = 30 for the following reasons. n should
neither be too small so that the forecaster lacks data nor be
too big so that the intersection between the data pools of all
forecasters is too big.

In the latter case we run the risk of creating forecasters
that generalize too much due to having too many different
input loads of different types of consumers when optimally it
would only have loads of the very same consumer type. That
would lead to forecasters that are too similar to each other.

And this would contradict the formulated goal of
implementing specialized forecasters fundamentally and
must therefore be avoided at all cost. In the case that n is too
small, another side effect is that there remain households that
are taken into no data pool of a forecast. This reduces the
eventual forecasting quality of the model potentially if we
forecast loads of households that are not taken into training of
any profile. With n = 30 we hope to find a compromise in that
conflict of interests. For this choice of n we observe a
representativeness score of little over 90%, which refers to
the share of households taken into data pool of at least one
forecaster.

Training

By the training of P2NN-F we refer to the training of the
6 forecasters that the model contains. For the household data
of each forecaster we select the same training partition as in
NN-F. This will important later on. Like in the training of
NN-F, we do not need to scale the load input data. The
training of P2NN-F is also performed in 6 iterations of the full
training data pool.

Implementation

The framework for the implementation of the neural
networks is the same as with NN-F. For k-Means, we rely on
the Scikit-learn implementation of Lloyd's algorithm or k-
Means. See [7] for details of the of the Scikit-learn library.

C. Benchmark Forecast SW-F

To compare the proposed models of this work, a
benchmark model is needed. Such benchmark model is
ideally both well performing and simple, that is easy to (re-)

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021

implement. In [8], the authors give an overview and
comparison of simple load forecasting models. Regarding
MAE and MAPE, best performing is a statistical method that
takes in the last k same weekdays of load, weights them and
calculates their mean. Based on this, we implement a model
that we call SW-F, which stands for same weekday forecast.
To get a comparable output of cardinality 15, we expect an
output in the form 𝑦 = (𝑦0; … ; 𝑦23). Let loads of the same
week day n weeks ago be 𝑥𝑛 = (𝑥𝑛0; … ; 𝑥𝑛23), weights
𝑤 = (𝑤1; … ; 𝑤𝑘) and all considered same weekdays
together be 𝑥 = (𝑥1; … ; 𝑥𝑘), then we define

𝑆𝑊𝐹(𝑥) = (𝑦0, … , 𝑦23), 𝑦𝑖 =
1

𝑘
∑ 𝑥𝑛𝑖𝑤𝑛

𝑘

𝑛=1

SW-F makes use of the strong correlation between past
same weekdays and the day of forecast. Additionally, all days
considered are weighted. This comes from the fact that not
every past day has the same inuence to the day of forecast. To
implement SW-F, we have to start by choosing an according
K. As we previously chose the maximum range of
consideration of past days to be of 28 days, we choose K to
be 4. This means we take days of 7, 14, 21 and 28 days ago
into consideration. Lastly, we have to choose weights.
Usually, more recent days have a higher inuence on the day
of forecast than later ones. To express that observation, we
choose w = (0.5; 0.2; 0.2; 0.1). Our benchmark forecast model
is thereby finished.

III. SYSTEM SETUP AND SIMULATION CONCEPT
On the one hand we want to evaluate the quality of the

before presented load prediction algorithms and on the other
hand we want to see how they perform when they are
implemented into a real EMS. The first part is done by
comparing the two neural network predictors to the
benchmark predictor.

For the second part a simple energy system was chosen
that consists of the entities battery (5 kWH), load, PV system
(6 kWp), the grid and the energy management system. As an
example, it shall be assumed that the PV system may only
feed in 70% of its nominal power. If the power is above this
limit, the power is curtailed resulting in financial losses.
These specifications correspond to the current regulation by
the German EEG 2021 for PV systems up to 25 kWp.

To avoid this effect a corresponding schedule can be
calculated that leaves enough free capacity in the ESS to take
over the peak power of the PV-system. The corresponding
elements that the EMS needs to include can be seen in Figure
1.

Figure 1: Important elements of the EMS

Central to the setup is the feed-in delimiter FID-VL,
which is described in detail in [9]. We use the virtual limit
operation strategy to measure the performance of the two
proposed forecasting models and the benchmark method.

This strategy requires a forecast of PV production, current
measurements of active production and load, the current
battery state of charge (SoC) and finally - and most
importantly for us - one of the three available load forecasts.

To be able to evaluate each of the proposed models
individually too and to relate them towards a lower boundary,
we also want to evaluate the feed-in delimiting without
forecasts. For this we use the simple feed-in delimiting
strategy of FID-VL. Additionally, to relate our findings
towards the upper boundary, we perform the simulation with
a perfect load forecast. This displays the maximum possible
performance.

The electrical connection of the components is depicted
in Figure 2. It is also indicated that for the hardware setup of
the system not all the components were actually added but
that only the battery and the inverter were really installed
while the other components were simulated inside the EMS
framework.

The EMS that we use to integrate our load forecasting
solutions into is Open-EMS. OpenEMS is an open source
EMS for PV storage systems in residential buildings written
in Java. It supports a great number of hardware components
that are relevant for PV storage systems. It features on-board
implementations of communication protocols like Modbus
and Mbus and is easily expandable due to its flexible and
dynamic modular architecture. The architecture and
communication in OpenEMS derives from the usage of the
OSGi framework, which defines a dynamic component
system [10]. This is important for the practical feasibility.
Furthermore, it features built-in simulation entities like
battery and PV simulators and allows to connect to time-
series databases for exterior inputs. For details and
documentation of OpenEMS see [11].

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021

Figure 2: Components of the investigated energy system. The

dashed line indicates the components that were simulated.

IV. RESULTS

A. Results for the load prediction algorithms

In the following, we evaluate NN-F and P2NN-F

regarding their error minimization performance. We explain
the evaluation of the two models separately, as they differ in
their prerequisites and concepts.

The evaluation of NN-F is straightforward. We now make
use of the testing data that we extracted. We let our model
predict loads for all testing samples and measure the
respective deviations from the expected (or actual) loads.
This requires only the selection of error metrics. We choose
MSGE, RMSE and MAE.

For P2NN-F, we must test each household individually.
For each of the households, we let the model choose the
forecaster on basis of a continuous load series out of the time
span of the test data partition. Then, it can output its forecast
for all test samples of the test data of that household. We then
average the results of each evaluation. In Table 2 we list
performance estimations of all three forecasts evaluated on
the same test data.

TABLE 2
 MSGE MSE

(kW)
MAE
(kW)

MAPE
(%)

NN-F 0.558 0.443 0.422 184

P2NN-F 0.582 0.474 0.442 206

SW-F 0.749 0.677 0.533 232

The results indicate that the best performing model is NN-
F. Compared to SW-F, NN-F reduces MSGE by 26%, MSE
by 35% and MAE by 21% or an averaged total of 111 W.
SW-F itself still performs very well for its complexity. That
is different with P2NN-F. Although it outperforms SW-F in

all considered error metrics too, it is clear that P2NN-F cannot
reach the precision of NN-F.

This is surprising given the additional model complexity
of P2NN-F. In the design of P2NN-F, we aim for a more
precise and individualized forecast of a household. We expect
the clustering to hand over to each forecaster only the type of
households that it has been trained with. Apparently, the
clusters are not dense enough to separate consumer types. The
alignment of new households towards one of the 6 clustered
profiles cannot sufficiently fulfil the task of profiling. The
reason for that could lie in the data pool or the clustering and
alignment approach or both. If the data pool does not yield
significantly different consumer types, the model cannot
work. But it is also possible that the alignment approach of
new households is not accurate enough. Analyzing the exact
problems and optimizing the model parameters could be an
interesting subject for future work.

B. Results for system simulation

The averaged saving per month and household for the
three forecasting models and the execution of FID-VL with a
perfect forecast are shown in Figure 3. It has to be noted that
these findings are not directly transferable to practice. The
simulation setup simplifies in using a perfect PV forecast and
disregarding electric conversion losses. Also, the monetary
evaluation is primarily for an intuitive comparison and is only
meaningful in the context of the underlying simulation
parameters.

While the perfect forecast is able to save an average of
470 ct, NN-F saves an average of 435 ct - only 7% less.
Because of the high amount of energy saved from curtailing,
SW-F achieves an averaged saving of 420 ct. Lastly, P2NN-
F saves an average of 386 ct.

Figure 3: Averaged savings per months for the different load

prediction algorithms compared to the perfect prediction

V. CONCLUSION
In this work we presented two DNN based load forecast

concepts of which one performed better than a comparable
algorithm that is based on a standard “same day” approach.
The load prediction was included into an EMS that controlled
a simulated energy system with the aim to reduce curtailment
due to a violation of the 70% feed in limit. As EMS platform
the open source framework OpenEMS was used. The results
of the system simulation also showed a reduction of the
overall curtailment losses when the improved load forecaster
was used. The OpenEMS implementation developed in the
framework of this work can now be easily tested on a real
world system.

Simulated

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021

REFERENCES

[1] UMass Trace Repository. Smart* data set for sustainability. http:
//traces.cs.umass.edu/index.php/Smart/Smart. Accessed: 2020-29-01.

[2] Heng Shi, Minghao Xu, and Ran Li. Deep learning for household load
forecasting - a novel pooling deep rnn. IEEE TRANSACTIONS ON
SMART GRID, VOL. 9, NO. 5, SEPTEMBER, 2018.

[3] Daniel L. Marino, Kasun Amarasinghe, and Milos Manic. Building
energy load forecasting using deep neural networks. IECON 2016 -
42nd Annual Conference of the IEEE Industrial Electronics Society,
2016.

[4] Martin Abadi et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from
tensorow.org.J.

[5] Fran_cois Chollet et al. Keras. https://keras.io, 2015.
[6] R. Saidur, H.H. Masjuki, M. Hasanuzzaman, and G.S. Kai.

Investigation of energy performance and usage behavior of domestic

refrigerator freezer using clustering and segmentation. Journal of
Applied Sciences 8 (21), 2008.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

[8] Felix Schnorr and Heinrich Hinze. Erstellung von lastprognosen für
den elektrischen strombedarf von einfamilienhäusern.
https://pvspeicher.htw-berlin.de/veroeffentlichungen/
abschlussarbeiten/, 2014. Accessed: 2020-04-02.

[9] Joseph Bergner, Johannes Weniger, and Tjarko Tjaden. Pvprog-
algorithmus.
https://pvspeicher.htw-berlin.de/veroeffentlichungen/daten/pvprog/,
2016. Accessed: 2020-23-02.OSGi Alliance. Specifications.
https://www.osgi.org/developer/specifications/. Accessed: 2020-21-
02.

[11] OpenEMS Association. Documentation of openems.
https://openems.io/. Accessed: 2020-04-02.

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021

