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Abstract— Photovoltaic systems are becoming a cost-effective 
solution for power systems traditionally based on diesel 
generators, such as islanded sites or microgrids. Indeed, PV-
storage systems, which combine solar energy and energy 
storage systems (ESS), allow both limiting atmospheric 
pollution and reducing operational costs. Sizing such a system 
is not straightforward. It requires modeling grid code 
constraints as well as an adapted control strategy. In this 
work, we present through simulation how the integration of 
probabilistic PV forecasts into control strategies is an efficient 
way of limiting energy losses and minimizing ESS capacity. 
First, we present our modeling approach, based on an 
innovative modeling platform developed at the CEA-INES 
called SPIDER. The system behavior is analyzed for control 
strategies based on different types of forecasts and various 
battery sizes. The results show how the trade-off between 
maximizing the energy injection and limiting the ESS size can 
be optimized by efficiently using probabilistic forecasts. 
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I. INTRODUCTION 

With the deregulation of power generation and the de-
carbonization targets set by countries worldwide, 
distributed generation with grid-connected renewable 
power plants is growing rapidly. Nevertheless, with an 
increased penetration rate of renewable sources on the grid, 
ensuring network reliability while satisfying the energy 
demand becomes more challenging. Regarding photovoltaic 
energy, one approach is to combine storage systems with 
PV plants, and define in advance an energy injection plan. 
In this approach, the producer first plans its 
injection/withdrawal, called production plan, for the day 
after, taking in account the solar irradiation forecasts. Then, 
the producer must ensure in real-time that the actual 
production meets the engagement to avoid being 
disconnected from the grid. Storage devices, like lithium-
ion battery banks, are needed to compensate for forecast 
errors as well as PV unavailability periods to smooth the 
production. Some flexibility can be added, like the 
possibility of updating the plan during the day. In this work, 
we model this approach for a PV-ESS system. We present 
through simulations how to efficiently size energy storage 
systems thanks to probabilistic forecasts. First, we focus on 
the methodology used, by detailing grid code constraints, 
study case, forecasts and control strategies. Then, we 
analyze simulation results, through indicators such as 
energy losses, energy delivered to the grid and battery 
charging/discharging profile. 

II. METHODOLOGY 

A. Simulation platform 

The CEA developed an advanced simulation platform, 
which addresses various PV applications such as self-
consumption systems, microgrids or utility scale PV 
systems [1]. The software is called SPIDER as Simulation 
Platform for the Integration of Distribution Energy 
Resources. SPIDER is a standardized platform based on a 
generic open-source modeling environment (Papyrus) [2]. 
SPIDER relies on the model-based approach where models 
representing the physical system are associated to models 
representing the system control. Regarding the control 
concept, a generic multi-level architecture for Energy 
Management System (EMS) has been developed. Such 
architecture defines the EMS as a combination between 
several planning controls and one operation control. The 
planning control aims at computing system set points for a 
given horizon. It is based on generation or consumption 
power forecasts. It includes optimization methods and 
associated models.  

B. Grid code 

French Polynesia is currently redefining its grid code in 
order to integrate more PV systems, while maintaining grid 
stability [3]. For PV storage systems, an energy injection 
scheme with three plateau was defined, and has to be 
followed by the energy producer. There are a multitude of 
parameters to define in order to obtain such a production 
plan (schedules, re-announcements, etc.). In our study, the 
following constraints were used (Figure 1):  

● The gradients at the start of the day and at the end 
of the day are fixed: 150 kW/min.  

 
Figure 1 : Schematic of the grid code constraints 
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● The energy injection must start between 6:30 a.m. 
and 7:30 a.m. and end between 5 and 6 p.m. 

● The start time for the 1st plateau is flexible. The 
end time of the 1st plateau is 10 a.m., and the start 
time of the 2nd plateau is 11 a.m. 

● The end time of the 2nd plateau is 1 p.m. and the 
start time of the 3rd plateau is 2 p.m. 

● The end time of the 3rd plateau is flexible. 

● The maximum power of each plateau cannot 
exceed 75% of the installed PV capacity. 

Announcements are made according to the following 
schedule: 1st announcement at 5 a.m., for the whole day; 
2nd announcement at 10 a.m., allowing the plan to be 
readjusted from 10 a.m. to 6 p.m.; and 3rd announcement at 
1 p.m. allowing the plan to be updated from 1 p.m. to 6 
p.m. 

In order to calculate this plan using forecasts, a 
mathematical model of the defined constraints is built in 
MATLAB. Once the mathematical model with its 
unknowns is established, we define a variable, called 
objective, to minimize. This variable corresponds, in our 
case, to the sum of several factors: 

● The sum of the power differences between the 
production plan and the forecasts 

● The difference between the initial state of charge 
of the battery and the final state of charge 

● Finally, the difference between the maximum state 
of charge and the minimum state of charge over 
the day. 

To optimize the production plan, it is necessary to 
minimize this objective/variable. The result is an optimized 
production plan, limiting the power at battery level, the 
charge imbalance between the start and the end of the day 
and excessive charge/discharge amplitudes during the day. 

C. Study case and production data 

The study focuses on a PV power plant of 18 MW, 
coupled to a lithium-ion energy storage. To analyze the 
operation of the PV storage system over one year of 
operation, we need to estimate the production of the PV 
plant over this same period. To do so, several methods are 
possible here: satellite data, meteorological data, or 
extrapolation of data from a known power plant. These 
different possibilities differ by their temporal resolution. 
While we have hourly data for the meteorological models, 
the data from known power plants are in minute time steps. 
The variability of production (with power drops of a few 
minutes) is therefore much more visible on the latter, and 
corresponds more to the needs of the simulation: the 
demand on the battery and the demand for power will thus 
be more realistic. It will be easier to estimate more 
accurately the energy exchanges during the day. Production 
data are therefore extrapolated from a nearby power plant 
that has been working for a few years. 

D. Forecasting system and data 

The forecasts used for this study correspond to day-
ahead forecasts, called SteadyMet at Steadysun. The 
SteadyMet forecasts rely on multiple numerical weather 
models: the GFS model (25 km resolution) from NOAA, its 
ensemblist version GEFS (50 km), this IFS-HRES model 
from the ECMWF (10 km), AROME model from Météo-
France (2.5 km) and the WRF model (1 km), which is 
calibrated and run at Steadysun. These input data are 
combined to generate probabilistic local weather forecasts, 
which are then converted into a power production using a 
physical solar model. Several machine learning algorithms 

come into play to combine at best the meteorological 
information from the different models and to post-treat the 
power production forecasts using previous days 
measurements. For this study, one year of historical 
forecasts from SteadyMet are used. 

The delivered forecasted values rely on a probabilistic 
approach, where confidence intervals are calculated instead 
of deterministic values. Indeed, for the deterministic 
approach, point forecasts do not give a full picture of the 
whole potential future outcomes, and therefore are not 
adapted to situations where uncertainties or risks are 
involved. Therefore, probabilistic predictions are more 
adapted to control strategies of systems, where decisions 
can be taken under a chosen level of risks. Calculation of 
percentiles relies on a combined approach of statistical data 
analysis and appropriate parametrization of weather 
models. An example of day-ahead forecast at horizon 24h 
for three consecutive days is shown on figure 2, where 
different levels of confidence are represented. For our 
study, in addition to the deterministic forecast, the 
percentile ’P30’ is used, which corresponds to 70% chances 
that real power exceeds this value.  

Given the constraints related to system control, we have 
recourse to several forecasts: the forecast available at 5 
a.m., to carry out the production plan for the day, and the 
forecast available at 10 a.m. and 1 p.m. to update the 
production plan. The control algorithm therefore 
automatically chooses the forecast to use according to the 
planning phase. 

 
Figure 2 : Example of 3 days of PV plant power production and its 

corresponding probabilistic forecasts for the horizon 24h. 
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E. Control strategies 

The control scheme for the PV storage systems 
integrates an advanced control with two levels: one 
planning stage, where the production plan is calculated 
according to forecasts, and one operational stage where the 
control tries following the predefined plan. When the plan 
cannot be followed, the control takes an adapted decision 
according to the situation (curtailment, disconnection, etc.). 

The operational phase takes into account the following 
behaviors: 

● Attempt to respect the power production plan. 
● Disconnection from the network for the rest of the 

day if the injected power deviates from a tolerance 
threshold (+/- 10% over 15 minutes). 

● Charging of the battery up to a SOC of 70% if the 
system is disconnected from the network. 

● Night charging between 12 p.m. and 4 a.m. if the 
state of charge of the battery is less than a 
predefined threshold. In order to start the 
following day with a certain amount of energy 
reserve, while limiting grid energy consumption, a 
SOC threshold of 30% was defined. 

● Curtailment of the PV plant power if the battery is 
fully charged and the production plan is less than 
the actual PV power. 

The planning stage corresponds to the definition of 
production plan, respecting grid codes constraints, as 
explained in II.B. Several factors impact the optimization 
process: 

● The size of the battery: this is the parameter of 
primary interest, as sizing the ESS is one of our 
objectives. 

● The forecast used: it is possible to choose a more 
or less conservative forecast (choice of quantile) 
for the control. The forecast used could also vary 
depending on the state of charge of the battery. If 
the battery SOC is low, a conservative forecast is 
used whereas a more optimistic one can be used 

when the SOC is high. 
● The battery state of charge is considered as a 

target: the production plan calculation algorithm 
will target a certain state of charge at the end of 
the day in order to perform these calculations. In 
our study, a target state of charge of 50% is 
applied. 

In order to study the sizing of the storage system, the 
simulations are performed on batteries ranging from 12 
MWh to 22 MWh with a 2 MWh energy step. No upper and 
lower limits for the SOC have been set in the simulations, 
and therefore the mentioned battery capacities correspond 
to the useful energy capacity of the ESS. The maximum 
charge and discharge AC power of the battery is set to 18 
MW, meaning that power will not be limited in the 
simulations as PV power does not exceed 18 MW for the 
considered PV plant. The efficiency of the storage system is 
considered constant for charge and discharge, and the value 
0.95 is set. 

For the forecasts, we used different scenarios: 1) Perfect 
forecast: the PV production is known; 2) Persistence: the 
daily PV production profile is considered equal to the one 
of the previous day; 3) Probabilistic forecast: the forecast 
P30 and the deterministic forecast are used to estimate the 

 
Figure 3 : Example of results for 3 days of simulation with a 16 MWh ESS and the ‘Steadysun forecast’ strategy. From top to bottom: 1) PV 

production curves, forecast and associated production plans; 2) Grid balance: Production plan, energy actually injected and energy taken from the 
network; 3) ESS balance: Power at ESS level and state of charge of the battery; 4) PV balance: Energy available and energy actually used.  
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PV production. The weight applied on each forecast 
depends on the SOC of the ESS. Simulations are run for 1 
year at 1 minute time step. 

III. RESULTS 

A. Simulation results example 

In order to show the simulated system behavior, three 
days of simulation are represented on Figure 3, where the 
ESS capacity is 16 MWh and the forecast used for the 
control is the Steadysun forecast. This figure is divided into 
4 parts.  From the top to the bottom, we have: 1) the 
production curves, the 5 a.m. and the 1 p.m. production 
plans, and the forecast used for the 1.p.m. production plan; 
2) a network balance, showing the injection plan, the 
energy actually injected and the energy consumed at night; 
3) a battery balance, where the state of charge of the battery 
and the charge/discharge powers are shown; 4) a PV plant 
balance, where we observe the energy theoretically 
available and the energy actually used. The 3 selected days 
illustrate several aspects of the control, marked by letters A, 
B and C. 

The event represented in A corresponds to a relevant 
modification of the initial production plan. Indeed, the 
update of the 5 a.m. production plan (dark blue) results in a 
more conservative plan (light blue). The corresponding 
SOC of the battery shows that this decision was relevant as 
the SOC at the end of the corresponding day is around 50%. 
The event B shows a night charge of the ESS as the SOC of 
the battery was around 10% at the end of the previous day. 
This low SOC is induced by an optimistic forecast. Hence, 
it is a production plan. Finally, the letter C shows a 
curtailment event, where the ESS is fully charged and PV 
energy exceeds production plan. 

B. Control strategies comparison 

In order to study the impact of forecasts on the system 
behavior, we decide to focus on energy losses. Those losses 
correspond to theoretically available PV energy that is not 
injected into the grid for three reasons: curtailment, 
disconnection of the system from the grid (failure to respect 

production plan), and losses linked to ESS charge and 
discharge. They are represented for 1 year of simulation for 
the 3 control strategies on Figure 4.  We observe that losses 
associated with the strategy using the perfect forecast are 

only due to the ESS behavior. Indeed, as forecasts are 
perfect, the associated production plan is always respected 
and no curtailment is observed. The lost energy is around 
330 MWh, corresponding to 1.2% of the available PV 
energy regardless of battery size. This value can be 
considered as the lower limit of losses, but cannot be 

 
Figure 4 : Comparison of energy losses for 1 year. 3 Strategies are compared and losses are expressed in terms of absolute value (top), and values 

normalized by available PV energy (bottom) 

 
Figure 5 : Comparison of energy injected to the grid between 

persistence forecast and Steadysun forecast, for different ESS capacity 
to PV installed size ratio 
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achieved in reality as forecasts are associated with 
uncertainties. 

If we now compare the losses for the persistence 
forecast with the Steadysun forecast, we observe that using 
persistence leads to higher losses. For an ESS capacity of 
16 MWh, those losses reach 3067 MWh for persistence 
(11.3%), and 1736 MWh (6.4%) for Steadysun forecast. 
This is mainly induced by more important disconnections 
from the grid for persistence, as production plan is not 
respected. Therefore, using Steadysun forecast leads to a 
43% decrease of losses in this case. This relative decrease 
can be observed with same order of magnitude regardless of 
the battery capacity. For Steadysun forecast, the 
predominant factor of losses evolves with battery capacity: 
for a battery capacity smaller than 16 MW, curtailment 
prevails, whereas ESS behavior is the main factor when 
capacity is higher than 20 MW. Disconnections from the 
grid also decrease with battery sizing, but cannot be 
completely avoided as there are few days with high errors 
of forecasts. 

To quantify the impact of using Steadysun forecast 
versus persistence, in terms of battery capacity, the absolute 
energy injected into the grid was plotted for different 
battery capacities (Figure 5). The latter was expressed as 
battery capacity to PV installed power ratio. As expected, a 
higher amount of energies is injected when using Steadysun 
forecast. In order to inject the same energy with persistence, 
the ESS capacity ratio must be increased by 0.3. For our 
study case, this corresponds roughly to a 6 MWh capacity.  

C. Energy storage sizing 

The sizing of the ESS has to be expressed in terms of 
energy and AC conversion power. For the battery capacity, 
we have already discussed the benefit of using Steadysun 
forecast when compared with persistence. The performed 
simulations allow obtaining a detailed battery usage profile 
at 1 minute time step, leading to a precise evaluation of the 
state of charge (SOC) over time. A histogram of such SOC 
profile is represented on Figure 6 (left graph). This 
information is crucial for a detailed estimation of battery 
lifetime. Indeed, the number of cycles could be extracted 
from such profiles, hence the resulting useful percentage of 
initial capacity. When studying economically this kind of 
system for a period of several years (typically 20), one can 
better estimate when ESS should be replaced, or what 
initial oversizing battery would be ideal in order to not 
replace the ESS during its lifetime. 

The inverter used for the ESS can also be sized by using 
simulation results. The power profile, expressed in power 
normalized by PV plant capacity, is represented on Figure 6 
(right axis). Negative power corresponds to discharge of the 
battery, whereas positive values are used for charging 
periods. We observe that the required power, regardless of 
charge or discharge, does not exceed 60% of the PV plant 
capacity. Therefore, for our study case, a 10 MW inverter 
would be sufficient.  

IV. CONCLUSION 

In this work, the energy balance of PV storage systems is 
studied through simulations. The control strategy has been 
adapted to respond to specific grid code constraints, and 
different types of forecasts can be integrated for managing 
the system operation. Control strategy based on 
probabilistic forecasts, when compared to strategy using 
persistence, show benefits in terms of energy injection into 
the grid. This advantage has been quantified, and a decrease 
of roughly 45% of losses is observed between a strategy 
with persistence and a control using probabilistic forecasts, 
regardless of battery size. In terms of battery capacity, for 
our study case, this corresponds to a gain of 6 MWh for a 
18 MW PV power plant. The simulation platform allows 
obtaining detailed profiles of battery demand at one minute 
time step. This information is of great importance for sizing 
the inverter used for the ESS and for a more accurate 
estimation of battery lifetime. 
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Figure 6 : Histogram of SOC and ESS power normalized by PV 

installed capacity for 1 year of simulation. The case 18 MWh and per 
Steadysun forecast is represented. 
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