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Abstract — Load forecasting is an important research area for 
the operation of an energy system, especially when renewable 
generation and energy storage are introduced. In the context of 
industrial energy users with a high peak load during the 
production phases, load forecasting allows the system to utilize 
battery energy storage systems (BESS) and renewable energy, 
i.e. photovoltaics for peak shaving. In this case, the industrial 
electricity consumers and the network operators can both 
benefit from the reduced cost related to the high peak load 
charge and more reliable and efficient operation and 
management of the grid network respectively. However, the 
performance of peak shaving depends to a certain extent on the 
precision of the load curve prediction. This paper presents a 
short-term load prediction comparison of an industrial 
consumer based on a) a model-driven (time series) and b) a 
data-driven (machine learning) approach. The electric load 
data are collected from the fabrication plant at Karlsruher 
Institut für Technologie and used to train the model for load 
forecasting. The verification test was conducted by simulating 
the BESS in the energy system to compare its execution in peak 
shaving with different forecasting methods. The result proves 
that the machine learning method with recurrent neural 
network (RNN) provides more accurate and robust predictions 
so that the utilization of the capacity of BESS can be promoted 
to improve the peak shaving performance and cost reduction. 

Keywords-component; short-term industrial load forecasting; 
time-series model; battery energy storage system (BESS); 
machine learning; recurrent neural network (RNN); long short-
term memory (LSTM) 

I.  INTRODUCTION 
Renewable energy has been adopted to solve the 

contradiction between the growing economy and the 
increasing energy shortage on a global scale. The annual 
increase in renewable power generation capacity has been 
expanding rapidly in the last twenty years. And the renewable 
share of the annual installed capacity has increased from 25% 
in 2001 to over 80% in 2020 [1]. However, due to the 
simultaneity of power generation and consumption, 
increasing penetration of renewable energy brought 
challenges to the safe and stable operation of the grid. 
Therefore, large-scale and distributed energy storage systems 
are used for peak-shaving in different cases to eliminate the 
inhomogeneous distribution of the redundant renewable 

generation over time and space [2]. Among the different 
energy storage technologies, Battery Energy Storage System 
(BESS) is flexible to achieve the function of peak-shaving 
with high efficiency and fast response time, which makes it 
an ideal solution for small-scale renewable energy 
integration, e.g., residential and small-scale industrial users 
[3]. For the power supply and grid, the integration of BESS 
plays an important role in delaying the upgrade of the 
transmission equipment and smoothing out the power 
fluctuation in the distribution network. The instant charging 
and discharging characteristics of BESS can reduce the 
impact of renewable energy on the distribution network and 
enhance the controllability of the distribution network [4]. On 
the other hand for the network users, BESS improves the 
renewable energy share in the energy system when 
photovoltaics or other renewable energy is supplied and 
reduces the peak power to obtain economic benefits by saving 
network charge based on the peak usage. Thus, despite the 
large-scale BESS market in Germany and Europe are 
suffering from a decline due to the pandemic, the turnover for 
residential and commercial-scale BESS still rose dramatically 
in 2020 [5]. 

Typically, there are two types of real-time dispatch 
strategies for BESS when it is used for peak shaving. One is 
to set a pre-determined peak shaving threshold, and the other 
is to track a calculated load curve according to actual load. 
There is a lack of flexibility with the fixed threshold, some 
adaptive algorithms could be applied to partly make up the 
deficiency [1]–[3]. The tracking mode is more intelligent and 
utilizes the capacity of BESS more efficiently but the battery 
may not be able to keep charging or discharging when it is 
full or running low. Since the BESS is supposed to work at 
the “hourly” level in terms of time duration when it is used 
for peak-shaving, the accurate short-term load forecasting 
(STLF) of the next few hours is the essential element to plan 
the charging and discharging of the battery. The effect of 
peak-shaving using BESS depends on the accuracy of the 
forecasted load curve and renewable generation to a great 
extent [4], [5]. Regarding load forecasting, there is a wide 
availability of research on time series analysis or neural 
network models [6]–[10]. Most of the studies focus on the 
forecasting model to improve the accuracy of the prediction. 
However, there is limited analysis on the impact of different 
forecasting methods on BESS.  
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On that account, a comparison of the different load 
forecasting approaches is conducted in this work on the 
electric load of the fabrication plant at the Institute of Data 
Processing and Electronics (IPE) of Karlsruhe Institute of 
Technology (KIT). The load profile is collected as the High-
resolution Industrial Production Energy dataset (HIPE) from 
the factory building which has been instrumented with smart 
meters[11]. This work aims to investigate the performance of 
peak shaving with BESS in an industrial application using 
different load forecast models. The load forecasts based on 
the time-series approach using the Autoregressive Integrated 
Moving Average model (ARIMA) and the recurrent neural 
network (RNN) approach using Long Short-Term Memory 
(LSTM) are conducted. The load prediction is used for BESS 
controlling in the simulation. The results prove that the 
accuracy improvement with load forecast is meaningful to 
BESS optimization. The main contributions and novelty of 
this work are the utilization of a high-resolution load profile 
for load forecasting and the comparative analysis of its impact 
on the BESS with renewable power integrated into the 
system. 

II. RELATED WORK AND BACKGROUND 
The subject of this paper is the small industrial energy 

consumer. Typically, the load characteristics of these 
consumers are not steady like those of large industrial 
consumers. The peak power during the production process 
when the equipment is running goes to a significantly higher 
level than the annual average power. Besides, there is a lack 
of a fixed schedule of the daily production. Therefore, the 
moment when the peak power comes on a single day is 
uncertain. Usually, the grid usage cost of this kind of 
consumer can be reduced by installing optional smart meters 
to separate the charge into capacity price and energy price. 
The network usage fee in the fabrication plant under 
investigation in this work cut down more than 5% with just 
the smart meters mechanism. The integration of BESS and 
renewable energy is possible to further improve the cost 
reduction and renewable shares in the system. However, the 
BESS would have lacked impact if load forecasting is 
neglected or inaccurate[4]. 

Generally, load forecasting can be divided into short-term 
load forecasting (STLF), medium-term load forecasting 
(MTLF), and long-term load forecasting (LTLF). The 
prediction for the period that is less than one week is 
categorized as STLF[12]. Traditional time series models such 
as autoregressive (AR) [13], [14], autoregressive moving 
average (ARMA) [15] has been introduced for a long time. 
The autoregressive integrated moving average (ARIMA) was 
upgraded from ARMA through differencing process to deal 
with non-stationary time series [16]. Juberias et al. [17] 
produce an hourly forecast with the ARIMA model for the 
real-time control system. With the development of machine 
learning in recent years, some hybrid models have been 
proposed to take advantage of the strength of ARIMA and 
Artificial Neural Networks (ANN) models [18], [19]. A 
hybrid model with a K-means clustering algorithm was 
proposed to classify the annual data into clusters [20]. The 
performance of the forecast of the electricity peak load has 
been improved compared to using the ARIMA model alone. 

In contrast, the data-driven approach is based on artificial 
intelligence. The ANN is one of the popular methods for load 
forecasting because of the ability to model nonlinearity. Park 

et al. [21] presented the ANN approach to interpolate training 
data and provide future load patterns. Hernandez et al. [22] 
presented an STLF with Artificial Neural Network (ANN) 
model based on a three-layer Multi-Layer Perceptron (MLP) 
to perform day-ahead load forecasting. Besides MLP, various 
structures of ANN have been used in load forecasting to 
improve the accuracy [23]. Ryu et al. [6] proposed a DNN-
based load forecasting model and apply them to demand-side 
empirical load. The deep neural network (DNN) belongs to 
ANN but with a more hidden layer structure to improve its 
capability of feature abstraction. 

Some other machine learning methods achieve decent 
results as well. Pereira et al. [24] apply a Fuzzy Inference 
System (FIS) to predict the electric load as time series. The 
FIS forecasting system delivers a low error but lost its 
interpretability due to the large number of rules it generated. 
Support Vector Machine (SVM) is a popular model used for 
non-linear time series modeling. Zhang et al. [25] and Jain et 
al. [26] present a load forecasting model based on Support 
Vector Regression (SVR) which achieves high accuracy in 
load forecasting. Wang et al. [27] conducted a comparative 
forecast of energy use in building with ANN, SVR, and long 
short-term memory (LSTM). The LSTM model which has the 
structure of a recurrent neural network achieves prediction 
with the smallest Mean Absolute Percentage Error (MAPE). 
Recently the LSTM model has been becoming attractive 
because it can learn long-term dependencies from the historic 
load and has been used in load forecasting for both residential 
households  [28], [29] and industrial consumers [7], [30]. 
Several pieces of research were conducted to further improve 
the LSTM approach. Marino et al. [31] demonstrate an 
LSTM-based Sequence to Sequence (S2S) architecture to 
deal with data with a high resolution of one minute. Zheng et 
al. [32] improve LSTM by using Xgboost and clustering for 
features importance evaluation and merging similar days. 
Bouktif et al. [10] tailor the Genetic Algorithm (GA) and the 
Particle Swarm Optimization (PSO) algorithm to tune the 
hyperparameters of the LSTM model for load forecasting. 

Although there is plenty of literature on load forecasting, 
the experimental validation of the load forecasting used for 
peak shaving with BESS in an energy system is quite limited. 
Barelli et al. [33] analyze the energy storage system in a 
micro-grid with the residential load predicted by ANN. 
Soman et al. [5] also present an LSTM model for peak 
shaving in campus micro-grid. However, both of these works 
still focus on the accuracy of the forecast.  The only relevant 
literature available on the impacts of load forecasting on 
BESS is conducted by Papadopoulos et al. [4], where they 
simply applied the ANN model and compared it to the 
situation without prediction. Therefore, this paper presents a 
comparative assessment of peak shaving with load 
forecasting by time series analysis and data-driven model. 
Additionally, the BESS and renewable energy generation are 
also integrated into the system and model. 

III. DATA ANALYSIS AND FORECASTING FRAMEWORK 

A. Dataset 
The data used for training and simulation in this work 

includes the industrial load data collected from the electronics 
production sites at the Karlsruhe Institute of Technology 
(KIT) named as the HIPE dataset [11] and the weather 
information collected at the closest climate station 
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(Stations_ID: 4177) of German Weather Service (DWD) 
provided on the DWD open data server [34]. 

The factory building is instrumented with high-resolution 
smart meters. The measurement of the weekly load profile 
chosen randomly from the four seasons is compared in Fig. 1. 
From the figure, there is no clear seasonal variation during 
the peak hour. The original data is recorded with a resolution 
of about 5 seconds. Thus, due to the high resolution, the raw 
data is slightly noisy. Since the annual maximum power 
charged for grid usage generally refers to the aggregated 
smart meter readings with a 15-minutes resolution [35], the 
load forecasting resolution should be no less than 15-minutes. 
In this work, we implement the load profile with three 
different resolutions: 15-minutes, 5-minutes, and 1-minutes.  

B. Time Series Analysis 
1) ARIMA Models 

Time series is one of the most popular fields in the 
research on load forecasting. Traditionally, the model most 
commonly used for time series analysis and forecasting are 
as follows, including 

• Autoregressive (AR) models 

• Moving Average (MA) models 

• Autoregressive Moving Average (ARMA) models 

• Autoregressive Integrated Moving Average 
(ARIMA) models 

The AR models describe the linear relationship between 
current and historical values using the previous value of the 
time series, while the MA models represent the current value 
in terms of a linear combination of random disturbances or 
forecast errors from previous. The ARMA model is a 
combination of the AR and MA, where the current value of 
the time series is represented linearly as its previous value and 
disturbances. The ARIMA model applies an initial 
differencing step to eliminate the non-stationarity of the 
series. The full ARIMA model of order p, q, and d for a time 
series notated as ARIMA(p,d,q) is defined as (1):  

𝒚𝑡
′ = ∑ 𝜙𝑖 𝒚𝑡−𝑖

′

𝑝

𝑖=1

+ 𝛿 + 𝜺𝑡 + ∑ 𝜃𝑗  𝜺𝑡−𝑗

𝑞

𝑗=1

 (1) 

where 𝒚𝑡
′ is the differenced series, 𝜺𝑡 is the white noise error 

series, p is the order of the autoregressive part, q is the order 
of the moving average part, and d is the degree of first 

differencing involved, 𝛿 is the constant. Equation (1) can be 
further written in the backshift notation as (2) with lag 
operator L: 

(1 − ∑ 𝜙𝑖𝐿
𝑖

𝑝

𝑖=1

) (1 − 𝐿)𝑑𝒚𝑡 = 𝛿 + (1 + ∑ 𝜃𝑗𝐿𝑗

𝑞

𝑗=1

) 𝜺𝑡 (2) 

The seasonal ARIMA (SARIMA) model includes 
seasonal terms into the ARIMA models. It can be written as 
ARIMA(p,d,q)(P,D,Q)m. where (P,D,Q)m is the seasonal parts 
of the model, m is the number of time steps for a single 
seasonal period. 

2) Model Fitting 
The Augmented Dickey-Fuller (ADF) test is used to 

identify the order of non-seasonal and seasonal differencing. 
The ADF test shows that the time series is stationary. 
Therefore, the non-seasonal and seasonal differencing orders 
d and D are set to be zero. The autocorrelation function (ACF) 
and partial autocorrelation function (PACF) of the load data 
with 15-minutes resolution are illustrated as Fig.2. According 
to ACF, the periodical sinusoid reaches the peak at 96 lags, 
which is approximately the time for 1-day. The seasonal 
period m is considered to be 96. The ARIMA model used to 
fit the load data with a 15-minutes resolution can be written 
as ARIMA(p,0,q)(P,0,Q)96. 

Fig.3 shows the ACF and PACF after seasonal difference. 
From Fig.2 and Fig.3, both ACFs are decaying of sinusoidal, 

 

Figure 1.  Weekly factory load measured by smart meters 

 

 

Figure 2.  Autocorrelation function (ACF) and partial autocorrelation 
function (PACF) of the load 

 

 

Figure 3.  Autocorrelation function (ACF) and partial autocorrelation 
function (PACF) of the load after seasonal differencing 
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which suggests q and Q might be zero. The spike in PACF 
remains outside of the confidence bounds until lag 2 in Fig.2. 
The spike of PACF after lag 2 also drops significantly in 
Fig.3. Thus, ARIMA(2,0,0)(2,0,0)96 is possible to be a 
suitable model. The order of the model for fitting the load 
profile is determined by minimizing the Akaike information 
criteria (AIC) value, which is an estimator of the relative 
quality of statistical models for time-series data. Table I 
presents the AIC values of the potential ARIMA models. 
From Table I, the smallest AIC is obtained with 
ARIMA(2,0,1)(3,0,1)96. However, the AIC difference 
between ARIMA(2,0,1)(2,0,1)96 and ARIMA(2,0,1)(3,0,1)96 
is negligible, but requires much less computation. The 
residuals with the ARIMA(2,0,1)(2,0,1)96 model are also 
within a certain level and conforms to a random distribution. 
Therefore, ARIMA(2,0,1)(2,0,1)96 is used for 15-minutes 
resolution load forecasting. Similarly, we apply the 
ARIMA(2,0,1)(2,0,1)288 model for the 5-minutes resolution 
load data. However, the load with 1-minutes resolution is not 
used for the time-series method, because the computation 
required from the ARIMA(2,0,1)(2,0,1)1440 model is 
impractical to apply for load forecasting.  

TABLE I.  TABLE THE AIC OF THE ARIMA MODELS  

ARIMA(p,d,q)(P,D,Q)m AIC 

ARIMA(2,0,0)(2,0,0)96 11075 

ARIMA(2,0,1)(2,0,1)96 10910 

ARIMA(2,0,1)(2,0,0)96 11064 

ARIMA(2,0,0)(2,0,1)96 10919 

ARIMA(3,0,0)(2,0,0)96 11067 

ARIMA(3,0,1)(2,0,1)96 10911 

ARIMA(2,0,0)(3,0,0)96 11099 

ARIMA(2,0,0)(3,0,1)96 10912 

ARIMA(2,0,0)(3,0,1)96 10998 

ARIMA(2,0,1)(3,0,1)96 10903 

C. Recurrent neural network 
1) Neural network model 

Feedforward neural networks (FFNN) can be used for 
load forecasting [4], [36], but FFNN is a static network and 
does not have a memory function, which prevents it from 
making full use of previous load information. 

In contrast, Recurrent Neural Network (RNN) is a 
sequence-based neural network with memory as shown in 
Fig.4. Neurons in the recurrent neural network can receive 
information from other neurons and themselves, which 
creates a loop structure including input layer hidden layer and 
output layer. U, W, and V are the weight matrices for the 
input-to-hidden, hidden-to-hidden, and hidden-to-output 
connection respectively, which are shared across time. 
Regarding the load forecasting problem, RNN can establish a 
temporal correlation between the current state and historical 
load. The parameters of recurrent neural networks can be 
trained using the Back Propagation Through Time algorithm 
(BPTT). However, the gradient in BPTT accumulates 
exponentially with time, which may lead to the Long-Term 
Dependencies Problem [37]. To avoid this problem from 
gradient explosion or vanishing due to the long input 
sequence for load forecasting, we use the Long Short-Term 

Memory network (LSTM) model which introduces the gating 
mechanism to control the path of information 
transfer[38], [39]. 

LSTM introduces an internal state 𝒄𝑡 and an external state 
ht for cyclic message passing. The structure of an LSTM cell 
is illustrated in Fig.5. The internal state 𝒄𝑡 and the external 
state ht are calculated by (3) and (4). 

ct = ft ⊙ ct −1 +  it  ⊙ c̃t (3) 

ht = ot ⊙ tanh(ct) (4) 

where ft, it, and ot are three gates to control the transfer of 
information, tanh denotes the tanh function, ⊙ denotes the 
element-wise vector multiplication, ct−1 is the memory from 
the previous moment, c̃t is a candidate state calculated from 
current input xt with a nonlinear function as (5): 

c̃t = tanh (Wc xt  + Uc h t −1 + bc ) (5) 

where matrix Wc, Uc, and vector bc are the parameters of the 
model.  

The gates are designed to be a value between (0, 1) and 
allow a certain percentage of information to pass through: 

• The forgetting gate ft controls how much information 
needs to be forgotten about the previous state 𝒄𝑡-1. 

• The input gate it controls how much information 
needs to be stored in the candidate state c̃t at the 
current moment. 

• The output gate ot controls how much information 
needs to be output to ht of the internal state ct at the 
current moment. 

The gates can be calculated as (6)-(8): 

ft = 𝜎(Wf xt + Uf ht −1 + bf ) (6) 

 

Figure 4.  Structure of the Recurrent Neural Network. 

 

Figure 5.  Structure of an LSTM cell. 

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021



it = 𝜎(Wi xt + Ui ht −1 + bi ) (7) 

ot = 𝜎(Wo xt + Uo ht −1 + bo ) (8) 

where W*, U*, and b* are also the network parameters that 
need to be learned from training, 𝜎 denotes the sigmoid 
activation function. 

2) LSTM-based forecasting 
LSTM layers can be used with other layers in a deep 

learning model. The architecture of the neural network used 
to train the load forecaster is a hybrid CNN-LSTM model 
proposed by Alhussein et al. [40], which uses a convolutional 
neural network (CNN) to extract the features from the input 
data. The model is simplified to use less convolutional and 
LSTM layers in our work as shown in Fig.6. The conv 
denotes the convolutional layer used to learn features. The 
max-pooling layer and Rectified Linear Unit (ReLU) layer 
are incorporated after the convolution layer. The dropout 
layers are used to prevent the overfitting issue. The fc denotes 
a fully connected layer to produce the final output. According 
to comparative results from Alhussein et al., the increase of 
lookback length in the CNN-LSTM model does not improve 
the forecasting performance. We adopt this assumption and 
set the length of the lookback sequences to be 6-step for all 
of the training in different time resolution. However, the 
lookback step is the same but the lookback period is different. 
The reference time is one and half hours for the 15-minutes 
resolution model, half an hour for the 5-minutes model, and 
six minutes for the 1-minutes model. 

The exogenous input of the network, besides the load 
history, is a sequence of vectors. Minutes of the hour (Mi), 
hour of the day (Hi), day of the week (Di), weekend/holiday 
or not (Vi), and weather forecast (Wi) are used as the feature 
indicators to train the neural network. The indicators of daily 
time (Mi and Hi) are encoded by the one-hot encoder. The 
reason for encoding these continuous features using one-hot 
variables is to extend the non-linear capability of the network 
model. 

3) Multi-step forecasting 
The energy management controller needs a sequence of 

load forecasts for the following periods of time to decide on 
peak shaving. Therefore, a multi-step prediction is required 
instead of one step. Typically, there are several strategies to 
perform a multi-step ahead sequence forecasting: 

• Recursive strategy 

Only one predictor is trained to give a one-step-ahead 
forecast. The multi-step output sequence is generated by 
recursive callback the forecasted one-step value as the correct 
one. 

• Direct strategy 

Direct strategy trains a sequence of predictors from 
identical input to predict the outputs for each time step in the 
future but each predictor still outputs a scalar value. 

• MIMO strategy 

The output is a sequence predicted by a single predictor. 
The difference from the previous cases is that the outputs of 
the model are vectors for the MIMO strategy. 

• DIRMO strategy 

DIRMO is the compromise strategy between the Direct 
and the MIMO strategy. The multi-step forecast problem is 
divided into smaller lengths. 

Among the different strategies, the MIMO and recursive 
strategy are computationally cheaper solutions [41]. From the 
point of effect, Gasparin et al. compare the different strategies 
for the time series forecasting in electric load cases [42]. They 
found that the MIMO outperforms the recursive strategy 
when only load values are used in the training. If exogenous 
features are introduced into the augmented input vector, the 
MIMO strategy gains negligible improvement. The recursive 
strategy gets the better performance in this case. 

 

4) Evaluation metrics 
The performance of the forecasted load can be 

quantitatively assessed in different error metrics.  

• Mean Absolute Percentage Error (MAPE)  

• The Mean Absolute Error (MAE) 

• Root Mean Squared Error (RMSE) 

MAPE is the sum of each absolute error divided by the 
actual value. It is one of the most commonly used metrics for 
assessing prediction accuracy. However, the problem with 
MAPE in our peak shaving consideration is that the MAPE 
divides each error value by the actual value. If the actual load 
at a given moment is very low and the error is very large, this 
will have a significant impact on the MAPE value. However, 
for peak shaving, we are more concerned about the error 
when the actual load is high. Therefore, MAPE is not an 
appropriate metric for our purpose. 

MAE is an indicator of the average of the absolute errors 
and RMSE is the square root of the mean of the squared error 
defined as (9) and (10). From the definition, the errors in 
RMSE are squared before average, which makes it magnify 
the difference of the larger errors. For peak shaving use cases, 
MAE can be used to compare the average error. When the  
MAE is at the same level, RMSE can be used to distinguish 
the better model by applying the multiplicative penalty to the 
outliers. 

MAE = 1

𝑛
∑ |𝑦𝑡 − 𝑦

^

𝑡|
𝑛

𝑡=1
 (9) 

RMSE =√1

n
∑ (yt − y

^

t)
2

n
t=1  (10) 

 
 

Figure 6.  Structure of the neural network for load forecasting. 
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IV. SIMULATION OF PEAK SHAVING 

A. Experiment Setup  
The system of the factory with BESS is simulated for a 

week. A small amount of PV generation is integrated so that 
the BESS will conduct the peak shaving based on the residual 
load. However, the capacity of PV is limited compared to the 
load. There will be no PV surplus and feed-in issue in this 
work. 

Fig. 7 shows a schematic of the energy system under 
investigation. The energy management controller sets the 
threshold of the peak shaving based on the forecast of load 
and PV generation and then determines the discharging 
power of the BESS according to the actual load. 

B. Integration of PV generation 
The power of PV generation can be empirically calculated 

as (11) [43]:  

PPV = Pmax · GT/GSTC · (1 + γ(Tc – TSTC)) · η (11) 

where Pmax is the nominal power of the PV module under 
standard test conditions (STC), GT is the solar irradiance on 
the PV panel surface. GSTC and TSTC are the standard 
conditions of solar radiation and module temperature of the 
PV test. 𝛾 is the temperature coefficient of the PV module 
power, η is the overall efficiency. The actual cell temperature 
Tc can be calculated as (12) [43]: 

Tc = Tamb + (NOCT – TNOCT) · GT / GNOCT (12) 

where Tamb is the ambient temperature, NOCT is the Nominal 
Operating Cell Temperature, which refers to a more realistic 
condition than STC. GNOCT and TNOCT are the reference 
irradiance and air temperature of NOCT measurement.  

In the experiment, we consider a nominal power of 5kW 
for the integrated PV module. The PV power forecasting can 
be calculated from the radiation according to the weather 
forecast.  

C. Energy management of BESS 
The residual load is the difference between the load and 

the PV generation as (13). When the residual load has 
exceeded a threshold (PThr), the BESS starts to supply the 
power to the demand. 

Pres (t) = Pload (t) − PPV (t) (13) 

1) Fixed-mode without load forecast 
In the simulation, when no load forecasting is available, 

the threshold is set to be a fixed level such that the BESS is 
always sufficient during peak shaving. According to the load 
profile of the factory building, the window of the peak 
shaving is set to be from 6 am to 9 pm as shown in Fig.8. The 
battery is charged during the night and discharged when the 
residual load is above the threshold.  

2) Tracking-mode with forecast 
With the load forecast, the threshold can be updated 

during peak shaving according to the energy available in the 
BESS and potentially required energy. Fig. 9 shows the 
flowchart to update the threshold for peak shaving in our 
simulation. During the peak hour, the energy management 
controller first estimates the remaining energy in BESS and 
then chooses the appropriate threshold. The discharging 
power PBESS is limited by the maximum power Pmax of the 
BESS, which is dependent on the BESS capacity. 

V. RESULTS AND DISCUSSION 

A. Load Forecasting Performance 
The load data from the factory and weather data from 

DWD in 112 days (16 weeks from May to August) are used 
to train the ARIMA model and the CNN-LSTM network. The 
data is partitioned into training, validation, and test sets with 
70%, 20%, and 10%. Since peak shaving operates on working 
days from Monday until Friday, the comparison of results 
focuses on the forecasting of the load on working days.  

 

Figure 8.  System configuration of the simulation. 

 

Figure 7.  Description of threshold power and peak shaving window 

 

Figure 9.  Flowchart of peak shaving algorithm. 
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a) Time series or neural network 
First, we compare the load forecasting with the ARIMA 

model and the CNN-LSTM model based on the data with 15-
minutes resolution. Since the window of peak shaving is 
15 hours from 6 am to 9 pm, we compare the forecasting in 4 
scenarios: 15-hours-ahead, 5-hours-ahead, 1-hour-ahead, and 
1-step-ahead. E.g. in the 15-hours-ahead scenario, each 
forecasted value is predicted based on the load profile until 
15-hours ago to the corresponding time. 

Fig. 10 shows the forecasting results for a working day 
with the ARIMA model and the neural network model. Note 
that the ARIMA model has a high sensitivity to the variation 
of the peak load and better tracking performance to the trend 
of recent load. However, this good tracking performance 
presents a significant lag effect in forecasting beyond 5 hours. 
On contrary, the neural network model is more stable and has 
a relatively consistent forecast regardless of the forecast time 
in advance. The 5-hours ahead forecast with the CNN-LSTM 
model almost overlaps the 15-hours ahead forecast. 

Fig.11 is a better illustration of the difference. Each solid 
line represents a forecast from the current time until the end 
of the peak shaving operation time (9 pm). When the load 
rises from 10 kW to more than 30 kW, the forecast from the 
ARIMA model responds rapidly to track the recent load. 
Although the ARIMA forecast provides a relatively reliable 
prediction for the overall trend after a few hours, however, 
the recent forecasts diffuse towards the current load. In 
contrast, the forecasts by the CNN-LSTM model almost 
converge to the main curve stream. But the performance of 
tracking a specific high peak load is lacking.  

Table II shows the comparison of the Mean Absolute 
Error (MAE) and the Root Mean Squared Error (RMSE) of 
the forecast with the ARIMA and CNN-LSTM model. It 
turned out that the MAE and RMSE of the ARIMA forecast 
are at the same level, if not better, as the CNN-LSTM. The 
first reason is that the ARIMA model tracks the load much 
better during the valley hour when the load is low and stable, 

which reduces the MAE and RMSE measured within the 
whole timespan. The second reason is that the ARIMA model 
does well in tracking the recent high peak as illustrated in 
Fig.10. Nevertheless, this does not mean that the ARIMA 
model outperforms the CNN-LSTM model in load 
forecasting for peak shaving. The ARIMA model has very 
different forecasts for 1-step ahead and 5-hours ahead 
scenarios. And the CNN-LSTM model provides a coherent 
and plausible description of the future load during the peak 
hour. Both models are further used for simulation. 

There is another thing we notice from the table that the 
increase of the time resolution of data does not improve the 
performance of load forecasting. It might be just the opposite, 
the instability contains in the data with high time-resolution 
may reduce the effectiveness of the pattern learned from the 
training. This happens in both ARIMA and CNN-LSTM 
models in the forecast for the load with 5-minutes time 
resolution.  

TABLE II.  THE FORECAST COMPARISON OF THE MODELS 

Method Data 
Resolution 

Forecast 
Scenario 

MAE of the 
Forecast 

RMSE of 
the Forecast 

ARIMA 

15-minutes 

1-Step 1.613 2.299 

1-hour 2.116 3.226 

5-hours 3.489 4.934 

15-hours 3.218 4.279 

5-minutes 

1-Step 1.825 2.049 

1-hour 2.851 3.991 

5-hours 4.348 5.860 

15-hours 4.332 5.271 

CNN-
LSTM 

15-minutes 

1-Step 2.801 3.489 

1-hour 3.107 3.854 

5-hours 3.625 4.362 

15-hours 3.613 4.350 

5-minutes 

1-Step 4.128 5.571 

1-hour 5.253 7.158 

5-hours 5.275 7.170 

15-hours 5.275 7.170 

1-minutes 

1-Step 1.624 2.336 

1-hour 3.757 5.013 

5-hours 3.757 5.013 

15-hours 3.757 5.013 

 

 

Figure 11.  Comparison of load forecasting with ARIMA model and CNN-
LSTM model with 15-minutes resolution load. 

 

Figure 10.  Comparison of load forecasting with the ARIMA model and the 
CNN-LSTM model in a peak shaving window. 
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b) Multi-step forecasting strategy 
We verify the assumption that the recursive strategy 

provides better results in multi-step forecasting than the 
MIMO strategy. Table III gives the MAE and RMSE of the 
two strategies. The recursive strategy is slightly better 
considering the two metrics together. Fig.12 shows a forecast 
conducted at 6 am for the load from 6 am until 9 pm. The 
recursive forecast is also slightly more accurate than the 
MIMO forecast. Besides, the recursive forecast is more 
flexible to implement in the simulation. 

c) Reference time step 
The assumption about the length of the reference time 

sequence is also verified in our results. Table IV summarizes 
the MAE and RMSE of the forecasting results with different 
look-back steps. From the table, we can conclude that adding 
the length of the look-back sequence does not have a 
significant impact on the performance of prediction. 
However, the increase of the reference time steps does have 
a negative effect and reduces the accuracy of the forecasting. 

B. Peak Shaving Performance 
We conducted the peak shaving simulation for one week 

with the 15-minutes time resolution data in 3 cases to 
compare the load forecasting models for peak shaving use 
case: a) without forecast, b) forecast with the ARIMA model, 
c) forecast with the CNN-LSTM model. The setup of the 
simulation is described in section IV.  

The BESS capacity is considered as the variables with 
values in the range of 5 to 200 kWh. The performance of peak 
shaving is evaluated based on the reduction of peak power 
and peak-hour energy. Fig.13 shows the comparison of the 
simulation results with 50 kWh capacity BESS. It can be 
noticed from the SOC curve that the ARIMA model always 
runs out of the capacity of BESS sooner than the CNN-LSTM 
model. This can be explained by the forecasting results 
presented in Fig.11. The ARIMA model tends to set a low 
threshold at the beginning due to underestimation of the load. 

TABLE III.  COMPARISON OF THE MULTI-STEP STRATEGIES 

Method Data 
Resolution 

Forecast 
Scenario 

Multi-step 
Strategy MAE RMSE 

CNN-
LSTM 15-minutes 15-hour 

Recursive 3.744 4.631 

MIMO 3.177 6.059 

TABLE IV.  COMPARISON OF THE REFERENCE SEQUENCE LENGTH 

Method Reference 
Steps 

Data 
Resolution 

Forecast 
Scenario MAE RMSE 

CNN-
LSTM 

6-steps 15-minutes 

1-step 2.801 3.489 

1-hour 3.107 3.854 

5-hours 3.625 4.362 

15-hours 3.613 4.350 

12-steps 15-minutes 

1-step 2.972 3.527 

1-hour 3.288 3.951 

5-hours 3.543 4.439 

15-hours 3.589 4.409 

24-steps 15-minutes 

1-step 3.265 4.067 

1-hour 3.478 4.318 

5-hours 3.898 4.870 

15-hours 3.977 4.631 

 

Figure 12.  Comparison of multi-step strategies in a peak shaving window. 

 
Figure 13.  Comparison of load forecasting models in BESS peak shaving simulation with 50 kWh capacity. 
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Afterward, the ARIMA model moves to a high threshold as 
the result of the decrease in BESS remaining energy and the 
overestimation of the future load. Therefore, the peak power 
in the shaved curve of the ARIMA model is 29kW, which is 
higher than the 25kW with the CNN-LSTM model. Since 
both forecasting models deplete the available capacity of 
BESS in each cycle, we consider them as a tie in the reduction 
of peak-hour energy. 

By contrast, peak shaving without prediction uses a fixed 
threshold. If the threshold is cleverly selected, it is possible to 
reduce the peak power of the grid load to 22 kW in the case 
of 50 kWh BESS. However, this is from the perspective of 
looking back in hindsight. It is hard to determine the most 
suitable threshold in advance. Even if we assume that the 
appropriate threshold can be picked beforehand, the peak 
shaving without load forecast is deficient in the respect of 
peak energy reduction. Alternatively, the reduction of peak 
power and peak energy can not be optimally achieved at the 
same time without a load forecast. The 50 kWh BESS 
discharges 118.4 kWh electricity in the weekly peak shaving 
simulation without forecast compared to 194.7 kWh (inverter 
loss included) with the forecast. This means that the load 
forecasting significantly improves the utilization of BESS by 
more than 60% in comparison with a fixed threshold. 

The performances are similar for other BESS capacities. 
Fig.14 shows the grid power with a smaller BESS of 10 kWh. 
The reduced peak power of the no forecast model with 
carefully selected threshold, the ARIMA model, and the 
CNN-LSTM model are 28 kW, 32 kW, and 29 kW 
respectively. But the peak energy reduction without 
prediction is even less than half of the energy with the 
forecasting models. Fig. 15 provides an illustrative 
description of the peak power and the shifted peak energy as 
functions of the capacity of the BESS. The solid lines 
represent the maximum of the peak power in the simulation 
for each BESS capacity.  The peak power falls first and then 
rises as the BESS capacity grows. The reason for the rebound 

of peak power is that the charging power at night dominates 
the peak power when the BESS becomes larger. The dashed 
lines represent the maximum of the peak power during the 
daytime. And the dotted lines show the sum of the discharged 
electricity during peak shaving. From the perspective of peak 
power reduction, an optimally selected fixed threshold is 
possible to give the lowest peak power, followed by the 
CNN-LSTM model. But the forecast can dramatically 
improve energy shifting until the BESS capacity reaches a 
limit where further energy shifting requires much more BESS 
capacity. We note that from both the power and energy 
aspects, the neural network model always outperforms the 
time-series model with various BESS capacities.   

VI. CONCLUSION 
In this paper, we presented an investigation of the load 

forecasting models for industrial peak shaving with a battery 
energy storage system. An ARIMA model based on time 
series analysis and a deep learning model based on a hybrid 
CNN-LSTM network structure is developed. The CNN-
LSTM network is trained with the historical load profile and 
exogenous time and weather information. The aim of 
implementing load forecasting in peak shaving is to provide 
a reference threshold during the peak hour. The load 
forecasting results generated with different models (the 
ARIMA model and the CNN-LSTM model), different time 
resolutions (15-minutes, 5-minutes, and 1-minutes), different 
multi-step forecasting strategies (recursive and MIMO), and 
different length of the reference sequence (6-steps, 12-steps, 
and 24-steps) are compared. Data with higher time resolution 
does not provide a convincible forecast compared to the 15-
minutes profile. The neural network model with a recursive 
strategy based on the last 6 steps is chosen for the comparison 
simulation with the time series model. The results indicate 
that the load forecast plays an important role in improving the 
utilization of BESS capacity in peak energy reduction. The 
simulation results demonstrate that the deep learning model 
will provide a more reasonable reference threshold in peak 
shaving than the time series model throughout the process 
due to its robust prediction of the overall trend. Future 
research should investigate the optimization of the 
dispatching strategies with surplus renewable energy 
available. Another thing that can be considered in BESS peak 
shaving is flexible pricing schemes, where the energy shifting 
can be managed to deliver further values. 
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