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Introduction and motivation

3

Integrating growing levels of 
variable renewable energy (wind 
and solar) may require strategies 

that enhance grid-system 
flexibility

• Storage technologies can be 
used for enhanced flexibility

• Due to declining costs, 
batteries have become a 
popular choice

Developers have increasing 
interest in co-locating generation 

with batteries at the point of 
interconnection, rather than siting 

separately

• Siting choice depends on 
multiple considerations…

• …which can also impact 
effective renewable integration
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Interconnection queues indicate that commercial interest 
in hybridization has grown in the United States

4

Note: Not all of this 
capacity will be built

Source: Berkeley Lab review of 37 ISO and utility interconnection queues
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CAISO and the non-ISO west have dominate fraction of all 
proposed solar plants in hybrid configuration

◻ Solar hybridization relative to total 
amount of solar in each queue is 
highest in CAISO (89%) and non-
ISO West (69%)

◻ Wind hybridization relative to total 
amount of wind in each queue is 
highest in CAISO (37%), and 
significantly less in all other regions

◻ Battery development is dominated 
by hybrids only in CAISO (where 
data is available)

5

As of end of 2020
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Prior paper outlined the pros and cons of hybridization

◻ Economic arguments for hybridization (vs. standalone plants) 
focus on opportunities to reduce project costs and enhance 
market value 

◻ Not all of these drivers reflect true system-level economic 
advantages, e.g., the federal ITC and some market design 
rules that may inefficiently favor hybridization over standalone 
plants

◻ Possible disadvantages of hybridization include operational 
and siting constraints

◻ If reduced operational flexibility is, in part, impacted by 
suboptimal market design then this too does not reflect true 
system-level economic outcomes 

6

Read more: 
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Is the paradigm shifting on how to site power plants?

◻ Historically, the electricity paradigm involved Balancing Authorities using 
transmission network to optimize geographically disperse technologies

◻ Co-locating suggests conventional wisdom might be changing
 Transmission constraints?
 Operational/cost synergies?
 Federal incentives?

7

Conventional paradigm 
Independent siting

Coupling paradigm in this study
Siting tied to generation
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We only consider renewable-plus-battery hybrids due to 
current commercial interest in these applications

8

Out of scope examples: 
(1) Multiple generation types (e.g. PV + wind)

(2) Alternative storage types (e.g. wind + pumped storage, concentrating solar power)

(3) Virtual hybrids with distributed technologies

(4) Full hybrids with operational synergies
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Our analysis focuses on the 7 nodal markets in the United 
States

10

2019 Generation sources for ISOs in this study◻ The seven markets are 
diverse in their resource 
mixes and market 
characteristics

◻ All operate day-ahead and 
real-time energy markets 

◻ Use nodal LMPs reflecting 
transmission congestion, 
unique compared to 
European counterparts
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Calculation of value: market optimization

◻ Optimization
 Price taker analysis means resources do not impact marginal price
 Optimistic: maximizes real-time energy market revenue with perfect foresight 
 Pessimistic: develop optimal schedule with day-ahead prices  realized 

revenue calculated from real-time energy market

◻ Key Inputs
 LMP prices at nodes with utility-scale solar, wind, and high volatility
 Average annual capacity price allocated to production in top 100 net load hours
 Regulation prices at ISO zonal level [used only as a sensitivity analysis]
 PV profiles modeled from weather data, standard design assumptions
 Wind profiles modeled from ERA5 weather data, standard wind power curve

◻ Key Outputs
 Energy, capacity, regulation revenues (levelized using generation from VRE)

11

Coupled Project Market Value

Battery
Constraints

VRE
Profiles

Market
Prices
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Storage value adder metric used to understand value 
boost from adding battery to VRE

◻ Tracks both coupled project value and standalone VRE investment value at the 
same geographic location

◻ Particularly helpful in understanding the potential for coupled projects to mitigate 
the value deflation that occurs for a VRE generator in regions with high VRE 
penetrations

12

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒗𝒗𝑺𝑺𝒗𝒗𝒗𝒗𝑺𝑺 𝑺𝑺𝒂𝒂𝒂𝒂𝑺𝑺𝑺𝑺 = 𝐸𝐸𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉

Coupled value   - Standalone VRE value
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Coupling penalty metric evaluates constraints involved 
with co-locating batteries at the same VRE location

◻ Subtract the market value of a co-located 
hybrid generator from the market value of a 
standalone VRE generator and storage plant 
sited at different locations

◻ Considers up to 3 constraints:
1. Reduced geographic options for battery siting
2. Increased operational constraints due to infrastructure 

sharing (i.e. inverter / POI)
3. Restrictions on grid charging

13
coupling valueStandalone VRE    +    storage value    -

𝑪𝑪𝑺𝑺𝒗𝒗𝑪𝑪𝒗𝒗𝑪𝑪𝑪𝑪𝑺𝑺 𝑪𝑪𝑺𝑺𝑪𝑪𝑺𝑺𝒗𝒗𝑺𝑺𝒑𝒑 = 𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑆𝑆 + 𝐶𝐶𝑆𝑆 − 𝐸𝐸𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶

Conceptual figure to frame
coupling penalty
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Design decisions and parameters modeled

14

Parameter Range Effect on hybrid value

Geospatial 1,763 pricing nodes Price nodes with higher volatility will be more valuable for storage 

Year 2012, 2014, 2015, 2017, 2019 Years with more renewable penetration become more valuable for storage

Dispatch algorithm Perfect foresight; Day-ahead schedule Perfect foresight leads to higher revenues through omniscient operation

Point of Interconnection 
(MW)

VRE capacity; VRE + battery capacity • More interconnection capacity → more revenue
• Potentially limited impact of constraint due to storage discharging at different times 

than renewable profile

Grid charging Disallow grid charging; Allow grid 
charging

• Allowing grid charging increases arbitrage opportunities
• Value depends on relationship of prices and renewable profile

Degradation penalty $5/MWh; $25/MWh Increasing penalty reduces lower value margin cycles, decreasing revenue but limiting 
degradation

Storage Size (%) 50% of generator capacity More capacity more revenue (though potentially diminishing returns)

Storage Duration (hrs) 4 hrs More durationmore revenue (though potentially diminishing returns)
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We consider a number of sensitivities to evaluate the 
robustness of our results

Default scenario: 
◻ No ancillary services 

◻ 1.3 ILR AC-coupled solar hybrid 

◻ Perfect foresight algorithm 

◻ Disallow grid charging for the coupled system

◻ VRE capacity for coupled POI limit 

◻ $5/MWh degradation penalty 

◻ 4 hr duration battery

◻ 50% battery to generation ratio 

15

Six main sensitivities: 
(1) Regulation reserves included in value

(2) 1.7 ILR DC-coupled solar 

(3) Day-ahead schedule 

(4) Allow grid charging 

(5) VRE+storage capacity for coupled POI limit

(6) $25/MWh degradation penalty 

N/A

N/A

(5)
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Motivating Research Questions

1. Can market revenues explain higher commercial hybrid activity in the Western U.S? 

2. Can they explain why commercial activity is higher for solar than wind? 

3. Does the traditional concept of independently siting resources not apply to VRE and 
storage technologies?

17
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Storage value adder higher in ERCOT and CAISO in 2019

◻ High value in CAISO began to 
diverge from other markets in 
2015

◻ Prior to 2019, ERCOT had a 
storage value adder that was 
the lowest of all ISOs

◻ No significant change in the 
value adder between solar and 
wind hybrids, besides in 
CAISO

18

Aggregated storage value adder across markets
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CAISO coupled projects help offset value deflation over the 
period between 2012 and 2019

◻ Value of standalone solar decreases significantly between 2012 and 2019 as 
solar penetration increases from 2% to 19% of generation.

◻ Coupled batteries almost offset this value decline
◻ ERCOT sees increase in both solar value and coupled value

19
Note: Value adder metric 
indicated by black number

ERCOTCAISO
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Results at individual nodes tend to follow the aggregated 
average in each ISO

◻ Suggests that results not driven by 
significant variation at the nodal 
level within a market

◻ ERCOT is a notable exception, 
where a few nodes in the west see 
substantially higher value

20

Geospatial differentiation of storage value adder 
across nodes
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The value of standalone VRE and storage exceeds the 
value of coupled projects in our default case

◻ These results suggest significant 
penalties associated with co-
locating VRE and battery 
technologies

◻ We did not find serious divergences 
between ISOs overtime

◻ NYISO is a notable exception 
where the penalty was higher than 
in other ISOs between 2012 and 
2015

21

Aggregated coupling penalty across markets

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021



Our high volatility node selection resulted in additional 
storage value compared to solar and wind nodes

◻ Strong correlation between 
annual standard deviation and 
corresponding standalone 
storage value (top graph)

◻ Median storage value at high 
volatility nodes is higher than 
the corresponding value at 
wind and solar nodes but there 
is significant overlap (bottom 
graph)

22

Storage value distribution across 
market and node type

Correlation between volatility and value
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Sensitivity cases significantly reduce coupling penalty

◻ While average coupling penalty is $12/MWh in default case, it is reduced to 
$1/MWh when using a relaxed POI/grid charging constraint, a less volatile node, 
and the day ahead scheduling algorithm

◻ Need to compare these penalties to potential cost savings of coupling 
including the investment tax credit and construction cost synergies.

23
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Conclusions

◻ Commercial interest in coupled projects differs from convention of independently siting and 
operation of electricity facilities through cost-optimized dispatch via balancing authorities

◻ We find that coupled projects can significantly boost standalone VRE value across all markets in 
the U.S.
 Value boost ranges from $5-$16/MWh, depending on sensitivity case
 Biggest boost in CAISO, where coupled projects can offset value deflation

◻ Still, there is a penalty to restricting the location to a wind or solar node
 Coupling penalty ranges from $1-$12/MWh, depending on sensitivity case
 Future siting decisions will need to consider nodal volatility more deeply
 Value of both the ITC (~$10/MWh) and project development cost reduction (~$5/MWh) could offset this penalty

24

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021



Questions?

◻ Contact the presenter
 Will Gorman (wgorman@lbl.gov)

◻ Additional project team at Lawrence 
Berkeley National Laboratory:
 Cristina Crespo Montañés
 Andrew Mills
 James Hyungkwan Kim
 Dev Millstein 
 Ryan Wiser
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Download all of our work at:

http://emp.lbl.gov/reports/re

Follow the Electricity Markets & 
Policy Group on Twitter:

@BerkeleyLabEMP

This work is funded by the Office and Electricity and the Office 
of Energy Efficiency and Renewable Energy of the U.S. 
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Only a few wind and solar locations had higher coupling 
value than standalone value

◻ Framework figure where dotted grey line represents a coupling penalty of 
$0/MWh

◻ The few negative penalties (right of dotted line), notably in ERCOT, illustrates the 
challenge of siting storage at high volatility locations for any specific year

27

Individual node comparison of 
hybrid and standalone value
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Sensitivities to storage value adder (absolute value)

28

Day-ahead schedule Higher degradation penalty

Grid charging / higher POI

With regulation value

1.7 DC-coupled

Virtual 5th International Hybrid Power Systems Workshop | 18 – 19 May 2021



Sensitivities to storage value adder (differences)
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Day-ahead schedule Higher degradation penalty

Grid charging / higher POI

With regulation value

1.7 DC-coupled
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Sensitivities to coupling penalty (absolute value)

30

Day-ahead schedule Higher degradation penalty

Grid charging / higher POI

With regulation value

1.7 DC-coupledLess volatile nodes
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Sensitivities to coupling penalty (differences)
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Day-ahead schedule Higher degradation penalty

Grid charging / higher POI

With regulation value

1.7 DC-coupledLess volatile nodes
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Overview of modeling framework
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Comparison perfect forecast to Day-ahead schedule model
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Base case optimization algorithm
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Ancillary service optimization algorithm
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DC-coupled optimization algorithm
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