Experiences with large grid-forming inverters on various island and Microgrid projects

Presented by Oliver Schömann

Hybrid Power Systems Workshop, 05/2019, Crete
Important Legal Notice

This presentation does not constitute or form part of, and should not be construed as, an offer or invitation to subscribe for, underwrite or otherwise acquire, any securities of SMA Solar Technology AG (the "Company") or any present or future subsidiary of the Company (together with the Company, the "SMA Group") nor should it or any part of it form the basis of, or be relied upon in connection with, any contract to purchase or subscribe for any securities in the Company or any member of the SMA Group or commitment whatsoever.

All information contained herein has been carefully prepared. Nevertheless, we do not guarantee its accuracy or completeness and nothing herein shall be construed to be a representation of such guarantee. The Company shall assume no liability for errors contained in this document, unless damages are caused intentionally or through gross negligence by the Company. Furthermore, the Company shall assume no liability for effects of activities that evolve from the basis of data and information provided by this presentation.

The information contained in this presentation is subject to amendment, revision and updating, which does not underlie any prior announcement by the Company. Certain statements contained in this presentation may be statements of future expectations and other forward-looking statements that are based on the management’s current views and assumptions and involve known and unknown risks and uncertainties. Actual results, performance or events may differ materially from those in such statements as a result of, among others, factors, changing business or other market conditions and the prospects for growth anticipated by the management of the Company. These and other factors could adversely affect the outcome and financial effects of the plans and events described herein. The Company does not undertake any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

You should not place undue reliance on forward-looking statements which speak only as of the date of this presentation.

This presentation is for information purposes only and may not be further distributed or passed on to any party which is not the addressee of this presentation solely after prior consent of the Company. No part of this presentation must be copied, reproduced or cited by the addressees hereof other than for the purpose for which it has been provided to the addressee. The content of this presentation, meaning all texts, pictures and sounds, are protected by copyright. The contained information of the presentation is property of the Company.

This document is not an offer of securities for sale in the United States of America. Securities may not be offered or sold in the United States of America absent registration or an exemption from registration under the U.S. Securities Act of 1933 as amended.
Experiences
grid-forming
Inverters

1. **Background, technical basics**
 Integration of VRE and grid-forming inverters

2. **Functionalities**
 Basic grid-forming functionality and added features

3. **Project references**
 St. Eustatius and other realized projects

4. **Learning and experiences**
 Topics, challenges and measurement details

5. **Outlook**
 Application and transfer to public grids
Integration of VRE in a Microgrid

Phases of VRE Integration
- Higher shares requires more efforts for integration
- Possible measures to achieve the according share of solar integration in an isolated Microgrid

<table>
<thead>
<tr>
<th>Phase</th>
<th>Measures to achieve stable operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Limit installations</td>
</tr>
<tr>
<td></td>
<td>Using existing flexibility</td>
</tr>
<tr>
<td></td>
<td>No measures for operation</td>
</tr>
<tr>
<td>3</td>
<td>Curtailment</td>
</tr>
<tr>
<td></td>
<td>Limits the injection to an allowable share by curtailment</td>
</tr>
<tr>
<td>4</td>
<td>Storage</td>
</tr>
<tr>
<td></td>
<td>Reserve-power</td>
</tr>
<tr>
<td></td>
<td>Must-Run units</td>
</tr>
<tr>
<td>5</td>
<td>Grid-forming</td>
</tr>
<tr>
<td></td>
<td>Allows switching off all conventional Voltage-Sources</td>
</tr>
<tr>
<td></td>
<td>100% penetration allowed</td>
</tr>
</tbody>
</table>
Integration of grid-forming inverters

Required measures on Microgrid-level allowing 100% inverter-based operation

Design considerations

Protection and energization

Interface with existing generation (e.g. Genset-Controllers)

monitoring and control

Energy Management

Deciding upon different operation modes

Managing and executing transfer of system states

Frequency and Voltage Control

Power dispatching

Secondary frequency and voltage Control
Experiences
grid-forming
Inverters

1. Background, technical basics
Integration of VRE and grid-forming inverters

2. Functionalities
Basic grid-forming functionality and added features

3. Project references
St. Eustatius and other realized projects

4. Learning and experiences
Topics, challenges and measurement details

5. Outlook
Application and transfer to public grids
Control Schematic
Grid-forming in SMA large scale storage inverters

P Reference:
(Active power at nominal frequency)

Q Reference:
(Reactive Power at nominal voltage)

Active power/ frequency -droop

Reactive power/ voltage- droop
Blackstart
- Topics of realization

Benefits and motivation
- Self-energization allows easier design
- Additional service for grid-tied battery-plants
- Resiliency for Back-Up-operation

On inverter-level
- Internal precharge from DC-side
- External Aux supply

On plant-level
- Synching the start of several devices
- Start-up of large transformer fleets
- Integration into grid-infrastructure
Synchronization
- Topics of realization

1. **Benefits and Motivation**
 - Flexibility for Microgrid operation
 - Back-Up operation and seamless Re-Sync
 - Stacking of application and services

2. **Measurements**
 - Frequency, amplitude and phaseshift
 - Often remote-location of POI

3. **Control and operation**
 - Conditions for De-Sync and Re-Sync
 - Speed, precision and timing of synchronization
Experiences grid-forming Inverters

1. Background, technical basics
 Integration of VRE and grid-forming inverters

2. Functionalities
 Basic grid-forming functionality and added features

3. Project references
 St. Eustatius and other realized projects

4. Learning and experiences
 Topics, challenges and measurement details

5. Outlook
 Application and transfer to public grids
Project St. Eustatius II, Caribbean Island
— operational since 11/2017, refer to SIW18_252

Intensive SAT

Fault-clearing
Online-UPS
Resiliency

Fed-In Energy

Total injected energy 6.49 GWh in the first year met design target of 6.4 GWh very well

Frequency and Voltage Control

An already installed synchronous condenser was decommissioned again because of high losses and no noticeable advantage

Immediate Backup

Within the first 6 months, in 7 events genset failures during night were compensated by the battery plant

Efficiency

Difference between power and energy application

Customer’s Feedback

more reliable than the well-established diesel genset fleet

Project Integration done by SMA Sunbelt Energy GmbH
Project basics Saba, Caribbean Island
– operational since 02/2019

- Installation in two phases
- ~1 Mio l Fuel saving per year
- Up to 10 h per day no genset running

Project Integration done by SMA Sunbelt Energy GmbH

- 2.0 MWp Solar
- 2.3 MWh Battery capacity
- Hybrid Controller
- 4 MVA genset capacity
- ComApp genset-controller
- Load of ~1.2 MW
Project basics Graciosa, Azores, Portugal
– operational since end of 2018

• 3 Sunny Central Storage 2475
 • Blackstart included
 • 6 MW Leclanché Li-Ion Battery

• Wind-farm 4,5 MWp
 • 5*900kW Enercon

• 1MWp Solar-plant
 • Existing genset-fleet

Project Integration done by Greensmith, a Wärtsilä Company
Project basics “The Brando”, Tetiaroa, French Polynesia
– operational since 12/2018

• Luxury Eco-Resort
• ~ 500,000l Fuel saving per year
• Up to 13h per day no genset running

• SCS 2200 Grid Forming
• Hybrid Controller
• Blackstart on plant-level included

• 1.4 MWp Solar, 32 STP Inverters
• CRE genset-controller
• Solar fraction of ~60%

Project Integration done by SMA Sunbelt Energy GmbH
Project basics Bordesholm, Germany
- operational since 04/2019

- Plant is mainly operating for Frequency Control Application (PRL)
- Can act as backbone for isolated grid operation of the local utility
- 7 Sunny Central Storage 2500-EV
- Hybrid Controller
- Island Operation, Blackstart and plant-resynchronization included
- Extended Site Acceptance Tests with TH Köln

Project Integration done by RES Germany GmbH for the local utility company Versorgungsbetriebe Bordesholm GmbH
Experiences grid-forming Inverters

1. Background, technical basics
 Integration of VRE and grid-forming inverters

2. Functionalities
 Basic grid-forming functionality and added features

3. Project references
 St. Eustatius and other realized projects

4. Learning and experiences
 Topics, challenges and measurement details

5. Outlook
 Application and transfer to public grids
Blackstart of a small Microgrid
- Start with one Inverter

Softstart of the whole grid
- Ramp-Up of Voltage
- Transformers are connected
- Obviously some loads are also connected

Logdata: Meas_302
Blackstart of a large Power Plant
- Start with several Inverters

Blackstart

- 20% Sync-voltage
- 2 devices used as Black-Start-Devices
- Simultaneously Ramp the Voltage up for 7 transformers

![Diagram of Blackstart system](image)

Low current required
Voltage Harmonics

Substantial Improvement

- Very high Harmonics in customer current consumption, especially 5th and 7th
- Typically 4-6% Uthd in Genset-based operation
- Measurement on the MV-Bus
- Improvement by about 2% as soon as the SCS2200 is connected in Grid-Forming-Mode

Logdata: Meas_297
Re- and Desynchronization
- Transfer Grid-tied ↔ Island, Plant of Bordesholm

> Resyncing to the Grid, Desync, stop and Blackstart of the battery plant

Re-Sync caused max exchange power of 250kVA, ~1.4% of the plant nominal power
Side effects
- Switching the gensets off

Noise and exhaust fumes
Obvious and noticeable effect for all people next to the power plant

Consumption
Aux. Loads of Generator
- Fuel conditioning
- Pumps and fans
e.g. ~10% of total load

Maintenance
Less and more convenient maintenance w/o heat and noise of running engines

Changing a lot
Tasks of operators change a lot
Fully automated operation
New interfaces to deal with
Experiences grid-forming Inverters

1. Background, technical basics
 Integration of VRE and grid-forming inverters

2. Functionalities
 Basic grid-forming functionality and added features

3. Project references
 St. Eustatius and other realized projects

4. Learning and experiences
 Topics, challenges and measurement details

5. Outlook
 Application and transfer to public grids
Outlook
- Application in public grids

Control stability and reserve power
Paving the way to higher VRE penetrations
Automatic frequency stabilization

Resiliency
Battery plant can act as a backbone for a local Microgrid
Blackstart allow operation according to a cellular approach

Fault-Ride-Through
Robust ride-through
Fast and suitable current limitation
Requirement specification to be done

Grid Codes
Grid-Codes are usually designed for current-controlled inverters
Review of requirements regarding the inherent behaviour and favorable application of grid-forming control
Summary
- Grid-forming experiences in Hybrid Power Systems

Still new but proven
field experience and intensive testing in a lot of different projects realized and successfully operating
Parallel operation with units reaching from 125kVA gensets to public grid

100% VRE are possible
No „must-run” conventional power plants required

Design and integration are crucial
Project engineering is a huge topic for 100% Inverter-based operation

Topics for Grid-tied use
Grid-Codes are usually designed for current-controlled inverters

SMA Solar Technology
Thank you very much for your attention!

Oliver Schömann
oliver.schoemann@sma.de

Project: Netzregelung 2.0, funding code:0350023D
Gefördert von
Bundesministerium für Bildung und Forschung
Bundesministerium für Wirtschaft und Energie
aufgrund eines Beschlusses des Deutschen Bundestages

SOCIAL MEDIA
www.SMA.de/Newsroom