

Siemens Gamesa hybrid solutions ... applied to isolated islands Leading the way to a renewables powered future

4th International Hybrid Power Systems Workshop May 22nd, 2019 Crete, Greece

Contents

1.	Company profile	03
2.	Hybrid systems	08
3.	Hybrid product offering	11
4.	Hybrid track record	20
5.	La Plana Offgrid Pilot Plant	26
6.	Greek Islands	35

Who we are?

Siemens Gamesa is a global leading provider of wind power products & service solutions

- #1 in Offshore
- #2 in Onshore & Service

Founded in April 2017 as a merger of Siemens Wind Power and Gamesa

A global company, based in Zamudio (Vizcaya, Spain), listed on the Spanish Stock Exchange

Member of IBEX 35, is traded on Madrid, Barcelona, Valencia and Bilbao

Siemens Gamesa – Key Facts^{*}

+90 GW Globally Installed

+23,000 Employees

€9.1 B Annual Revenue

€10 B Market Capitalization

€23 B Order Book

* End of March 2019

© Siemens Gamesa Renewable Energy S.A

True **global**, modern and scalable **footprint**

Portfolio covering all requirements

Integrated Hybrid systems

5

Technology & Innovation

• 7 Technology Centers: Bangalore (India), Boulder (USA), Brande (Denmark), Hamburg (Germany), Bilbao, Madrid & Pamplona (Spain)

© Siemens Gamesa Renewable Energy S.A

Integrated Hybrid systems

SIEMENS Gamesa

Hybrid systems Wind, solar & storage (ON & OFF grid)

Hybrid systems

Wind integrated hybrid power plant. Definitions

Hybrid systems

Siemens Gamesa has a long track record regarding hybrid solutions

9

Siemens Gamesa's

Hybrid product offering

SGRE's hybrid portfolio

Siemens Gamesa hybrid offering. The best results on the market

© Siemens Gamesa Renewable Energy S.A

SGRE's hybrid portfolio

An optimized, streamlined product portfolio

** Designed for the North American market, but available worldwide.

© Siemens Gamesa Renewable Energy S.A

The Hybrid Plant Controller (HPC©) is the brain of a hybrid plant

Siemens Gamesa HPC©, **Controller.** Manages wind gusts, shadows, grid

requirements, etc. at WTG and inverter level.

Siemens Gamesa HPC©, SCADA

Monitors & reports the entire hybrid plant as one integrated power plant.

MEGA forecasting tool

Hybrid resource evaluation and prediction in operation to maximize energy selling price in pool markets.

HPC©: Wind & Solar Case Example. Functionalities

- Hybrid plant maximum output power limitation for not exceeding maximum design or administrative limits
- PLF (plant load factor) optimization.
- WiSH plant Control modes:
 - Wind Power priority: solar power limited for not exceeding the maximum allowed.
 - Solar Power priority: wind power limited for not exceeding the maximum allowed.
 - o Hybrid balance:

Selectable Wind production range = $(0, \frac{\text{Installed Wind Capacity}}{\text{Max. allowed Hybrid production output}} * 100\%)$ Selectable Solar production range = $(0, \frac{\text{Installed Solar Capacity}}{\text{Max. allowed Hybrid production output}} * 100\%)$

where,

Selectable Wind production + Selectable Solar production = 100%

Let's se an example in the next slide...

© Siemens Gamesa Renewable Energy S.A

HPC©: Wind & Solar Case Example.

Hybrid Balance: Possible scenarios of working conditions in Kavital with Hybrid Balance mode selected.

1 - Available generat	ion power below maxim	um allowed output – output power not limited		
Wind: • Available: 20MW • Produced: 20MW	Solar: • Available: 10MW • Produced: 10MW	Selected Wind to solar production share: 60-40% Maximum produced o/p power: 30MW (20MW from Wind + 10MW from Solar) Real Wind to solar production share: 66-33%	Hybrid Plant Total Nominal Capacity: • Wind: 50MW • Solar: 30 MW Maximum Allowed Hybrid Plant Export Power: 50 MW	
2- Output power limi	ted – insufficient resourd	ce to achieve production share		
Wind: • Available: 40MW • Produced: 35MW	Solar: • Available: 15MW • Produced: 15MW	Selected Wind to solar production share: 60-40% Maximum produced o/p power: 50MW (35MW from Wind + 15MW from Solar) Real Wind to solar production share: 70-30%		
3- Output power limi	ted – available resource	exceeding required production share		
Wind:Available: 50MWProduced: 30MW	Solar: • Available: 20MW • Produced: 20MW	Selected Wind to solar production share: 60-40% Maximum produced o/p power: 50MW (30MW from Wind + 20MW from Solar) Real Wind to solar production share: 60-40%	SOLAR PLANT WIND FARM	
			SIEMENS Gameca	

© Siemens Gamesa Renewable Energy S.A

Integrated Hybrid systems

SIEMENS Gamesa

SGRE's hybrid portfolio

Hybrid solar PV offering

BESS offering. ReStor. SGRE proprietary BESS solution

SGRE's hybrid portfolio

Off-grid Isolated Systems

Track Record: Hybrid Systems is a fact @ Siemens Gamesa

SAN CRISTOBAL - Offgrid wind & thermal plant

Galapos Island, Ecuador

Multi-technology

penetration (monthly up to 60%).

8,3M liters of fuel replaced.

at MW level.

2007.

Commissioned in

© Siemens Gamesa Renewable Energy S.A

LA PLANA - Hybrid & offgrid prototype & test plant

Zaragoza, Spain.

© Siemens Gamesa Renewable Energy S.A

KUDGY - First hybrid plant. India

India.

Multi-technology

at MW level.

commissioned in 2017.

EPC solution (design, engineering and commissioning).

The country's first complete hybrid technology solution.

Photovoltaic inverters made by Gamesa Electric.

© Siemens Gamesa Renewable Energy S.A

KAVITAL - First commercial hybrid on-grid plant in India

Karnataka, India.

© Siemens Gamesa Renewable Energy S.A

BULGANA - Green power hub. A large scale pioneering project with BESS

Bulgana, Australia

© Siemens Gamesa Renewable Energy S.A

La Plana Offgrid Pilot Plant: Technologies

Test plant la plana: Wind + Solar + Batteries + Diesel

© Siemens Gamesa Renewable Energy S.A

Test Plant La Plana: General View

© Siemens Gamesa Renewable Energy S.A

Technologies: Generation at La Plana

Wind generation: G52 - 850 kW

52m 55 m Transformer 20 kV/690 V Contraction of the local division of the loc ► Power: 850 kW > Diameter: 52 m > Tower: 55 m (3 sections) > Rotor speed: 15-31 rpm

© Siemens Gamesa Renewable Energy S.A

Integrated Hybrid systems

SIEMENS Gamesa

RENEWABLE ENERGY

Technologies: Generation at La Plana

Solar PV generation: 245 kWp

- > Number: 816 panels
- > 48 strings (17 panels in series, 612V)
- > **PV Inverter:** Gamesa Electric (INV-PLUS-500kW)

Panel Characteristics (for STC):

- Maximum Power: 300Wp
- **Efficiency:** 15,5%
- > 72 solar cells of multicrystalline silicon in series

© Siemens Gamesa Renewable Energy S.A

Technologies: Generation at La Plana

Diesel generation: 666 kW

- > Manufacturer: MTU
- > Model: 6R1600DS300 (222 kW, 278 kVA)
- > Number: 3
- > Cylinders: 6
- > Generator: HIMOINSA (HM 280B2) (Permanent magnets, brushless, self-excited)
- > Controller: DEIF AGC
- > Out voltage: 400 V
- > Start time: 15 s
- > Consumption (100% power): 59 l/h (0,267 l/kWh)

Technologies: Generation at La Plana

Lithium Battery: 429 kW – 143 kWh

- > **Cell Chemistry:** LMO (Lithium Manganese Oxide)
- > Cell Manufacturer: SAMSUNG
- Battery with 3 racks in parallel (429 kW, 143 kWh)
- > **PCS:** Gamesa Electric GAE 1.25 MW (SGRE)
- **Continuous discharge power:** 143 kW (1 C)/rack
- > Peak discharge power: 572 kW (4C, 5 min)/rack

© Siemens Gamesa Renewable Energy S.A

Technologies: Generation at La Plana

Flow Battery: 120 kW – 400 kWh

Chemistry: Vanadium

- > Number of electrolysers: 120 (6 series, 20 parallel)
- > **PCS:** Gamesa Electric GAE 200 kW (SGRE)
- > 2 Electrolyte storage tanks: 18.000 |

© Siemens Gamesa Renewable Energy S.A

Technologies: HPC© - Offgrid at La Plana

© Siemens Gamesa Renewable Energy S.A

Technologies: HPC© - Offgrid at La Plana

© Siemens Gamesa Renewable Energy S.A

Technologies: HPC© - Offgrid at La Plana

- Diesel groups generate the grid (voltage and frequency control)
- The HPC minimizes diesel consumption, taking them to their technical minimum power (Objective: Minimize LCOE)

In order to further optimize the LCOE, HPC© when enough Renewable & battery energy are available, the HPC can shut down the diesel gensets and create the grid with the Plant converters (mainly Storage converters).

Greek Islands

Greek Islands: Cost of Electricity – 21 islands (ex Creta, ex Rodas, ex islands < 1 MW)

- ✓ 11 island, totaling 115 MW installed (small islands), with Cost of Electricity higher than 300 €/MWh
- ✓ 6 islands, totaling 225 MW installed with Cost of Electricity between 200 and 300 €MWh
- ✓ 4 islands, totaling 356 MW installed (large islands) with Cost of Electricity between 172 €MWh and 200€/MWh

Cost of Electricity vs. Consumption (MWh)

190

178

172

401

Skyros

365

346

269

222

197

Greek Islands- LCoE (mix), IRR and curtail vs. renewables penetration

© Siemens Gamesa Renewable Energy S.A

Integrated Hybrid systems

SIEMENS Gamesa

Thank you!

Damián Pérez de Larraya Head of Integrated Hybrid Systems <u>damian.perezdelarraya@siemensgamesa.com</u>

