

6

Sizing and Optimization of Hybrid Mini-Grids with *micrOgridS*

- an Open-Source Modelling Tool.

Sarah Berendes, Paul Bertheau, Philipp Blechinger

3rd International Hybrid Power Systems Workshop 8.5.2018

Reiner Lemoine Institut (RLI)

Applied research to target 100% RE in the mix

- Not-for-profit research institute
- 100 % subsidiary of Reiner Lemoine Foundation (RLS)
- Established 2010 in Berlin
- Managing Director: Dr. Kathrin Goldammer
- Approximately 25 researchers + students
- Member of: ARE, eurosolar, SDSN, dena

Sizing and Optimization of Hybrid Mini-

Grids with micrOgridS

Reiner Lemoine Founder of Reiner Lemoine-Foundation

Agenda

- 1) Motivation
- 2) Methods & Modelling Approach
- 3) Case Study
- 4) Conclusions

Agenda

1) Motivation

- 2) Methods & Modelling Approach
- 3) Case Study
- 4) Conclusions

Motivation: Hybridization Potential

SDG # 7 World Nuclear and RE Others, sources, 11% **AFFORDABLE AND** 23% **CLEAN ENERGY** Fossil Fuels, 66% Electricity generation in 2015 Total = 24255 TWh

Island States/ SIDS

- Strong dependency on petroleum goods
- Highest electricity rates worldwide
- Vulnerability to effects of climate change

3)

1)

2)

Software tools are crucial to ...

- map the complexity of interactions of system components
- provide optimized sizing of system components
- identify optimized operational strategies
- provide guidance for political decision making and identify investment cases

Software tools are crucial to ...

 map the complexity of interactions of system components

Software tools are crucial to ...

- map the complexity of interactions of system components
- provide optimized sizing of system components
- identify optimized operational strategies
- provide guidance for political decision making and identify investment cases

Sizing and Optimization of Hybrid Mini-

Grids with micrOgridS

Open source software is crucial to ...

- meet scientific standards in software based research
- foster bottom-up approaches by reducing barriers associated with high license cost of proprietary software tools
- improve research quality & completeness & knowledge pooling due to collaborative modelling

", (...) models need to meet scientific standards as public acceptance becomes increasingly important" Hilpert et. al³⁾

open source

Agenda

- 1) Motivation
- 2) Methods & Modelling Approach
- 3) Case Study
- 4) Conclusions

Requirements for a comprehensive software tool

optimized operational strategies

- adjustable time resolution (15 mins - hourly)
- multi-objective optimization
- include stability criteria (rotating mass and spinning reserve)

micrOgridS – Overview

The micrOgridS tool as an open-source optimization tool adopted for the purpose of HMG design.

- generates sizing of PV and BESS
- calculates optimized hourly dispatch
- allows to modify the scheduling horizon by utilizing the Rolling Horizon Approach
- formulated as a Mixed Integer Linear Problem
- based on the Open Energy Modelling Framework (Oemof) that is programmed in Python

- open-source framework for energy system modelling
- hosted by RLI and ZNES Flensburg
- modular and generic
- developed in a community project
- embedded in Open Energy Modelling Initiative
- well-documented

Website: https://oemof.org/

Github:

https://github.com/oemof/oemof

Documentation:

https://oemof.readthedocs.io/en/ stable/

Latest release : oemof v 0.2.1

micrOgridS – Objective and Constraints

Objective Function

A single objective function describing the total annualized system cost TC of the HMG

$$\min TC = \sum_{j} (CC_{j} + OPEX_{j}) + AWC + \sum_{dg} FC_{dg} \quad \forall j, \forall dg$$

TCtotal annualized system cost CC_j capital cost of component j $OPEX_j$ operation cost of component jAWCaverage wear cost of battery FC_{dg} fuel cost of diesel genset dg

Stability Constraints:

- Spinning reserve
- Rotating mass

- simplified (N-1)-constraint
- generator order

Agenda

- 1) Motivation
- 2) Methods & Modelling Approach
- 3) Case Study
- 4) Conclusions

		PV	BESS	DG1=DG2	DG3
installed capacity	[kW]	free	free	186	320
CAPEX	[\$/kW]	2500	300	500)
	[\$/kW],		2.00	0.00)
UPEX	[\$/KVV/II _{on}]	Z.5	3.88	0.02	<u></u>
lifetime	[yrs]	20	10	20	

•

•

1110	rognao	•	Iomer				
						fuel	
PV [kW]	BESS [kWh]	PV [kW]	BESS [kWh]	LCOE	RE share	consumption	excess energy
264	338	288	730				
micrOgridS/Homer							
		PV [kW]	BESS [kWh]				
		264	338				
		288	730				

transparency

Agenda

- 1) Motivation
- 2) Methods & Modelling Approach
- 3) Case Study
- 4) Conclusions

mircOgridS represents a valid base for HMG related modelling tasks.

Oemof is a useful toolbox to model the elaborated requirements for a comprehensive software tool.

All high priority components are integrated.

There are deviations compared to Homer.

Further development targets e.g. :

- integrate missing requirements
- reduce computational time (time series aggregation approaches, solver algorithm)

• GUI development (web-based interface, reduced in complexity)

Sizing and Optimization of Hybrid Mini-Grids with micrOgridS

Join the open source modelling community!

Thanks to the Photovoltaik Institut AG Berlin for funding and collaboration in this project.

Comments & Ideas?

Thank you!

- ... Partnerships
- ... Research Collaboration
- ... Joint Project Proposals

Tel: +49 (0)30 1208 434 0 E-Mail: sarah.berendes@rlinstitut.de Web: http://www.rl-institut.de

REINER LEMOINE

Sources

- United Nations (2015). Web source: https://www.un.org/sustainabledevelopment/wp-content/uploads/2016/10/UN-Guidelines-for-Use-of-SDG-logo-and-17-icons.October-2016.pdf
- 2) International Energy Agency. World Energy Outlook 2017
- 3) Lucas, H., et al. (2017). "Critical challenges and capacity building needs for renewable energy deployment in Pacific Small Island Developing States (Pacific SIDS). ", Renewable Energy vol 107, pp. 42-52
- 4) Hilpert, S et al (2017, February). Addressing energy system modelling challenges: The contribution of the open energy modelling framework (oemof). doi: 10.20944/preprints201702.0055.v1
- 5) P. Peerapong and B. Limmeechokchai, "Optimal electricity development by increasing solar resources in diesel-based micro grid of island society in thailand," Energy Reports, vol. 3, pp. 1–13, Nov. 2017.
- J. Y. Tao and A. Finenko, "Moving beyond LCOE: impact of various financing methods on PV profitability for SIDS," Energy Policy, vol. 98, pp. 749–758, Nov. 2016.

Reiner Lemoine Institut (RLI) - Fields of Research

Transformation of	Mobility with	Off-Grid
Energy Systems	Renewable Energy	Systems
" We analyze and optimize future scenarios with an energy supply largely based on renewable energy sources. "	"We study sustainable mobility concepts through sophisticated implementation and optimization of renewable energy systems. "	"We support the development of sustainable energy supply for remote regions."

Reiner Lemoine Institut (RLI) – Fields of Research

Off-Grid Systems

OUR MOTIVATION

Economic Decentralized energy supply systems represent an attractive market for RE and battery storage

Ecological Fossil fuel substitution by RE reduces harmful emissions locally and globally in off-grid systems

Social Electricity is a prerequisite for improved local development, health care and education.

OUR EXPERTISE	Geographic Information System				
Energy System Mod	delling	Marke	Market Potential Analysis		
Financial Assessme	ent		Strategic Planning		

"We support the development of sustainable energy supply for remote regions."

Requirements for a comprehensive software tool

General

- Modular, extensible, open for external modules
- Generate robust results
- Integrate easy-to-use capabilities

Further functionality criteria

- Include possibility to update uncertain parameters
- direct download of resource data

The Hybrid Micro Grid is modelled via graph-based modelling approach.

- System components are described as *Nodes*
- *Nodes* are connected with *Flows*
- Parameterization mainly attributed to *Flows*

→ "generic" component models