

Dr. Gunter Arnold, Fabian Niedermeyer

Fraunhofer Institute for Energy Economics and Energy System Technology Kassel, Germany

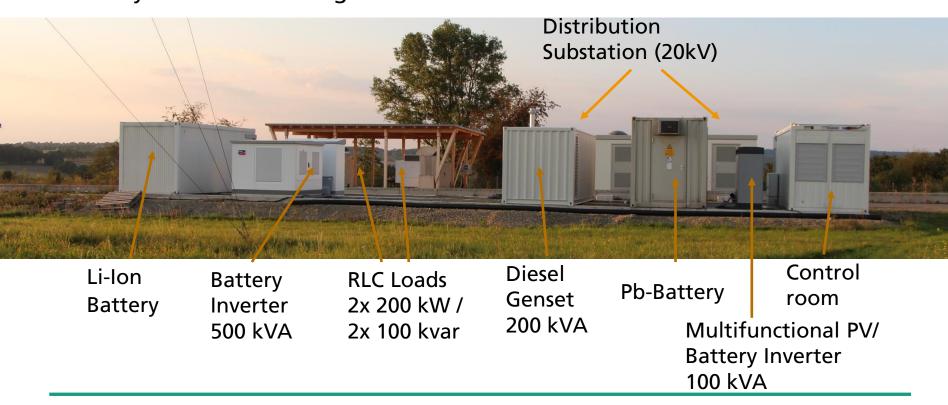
Slide 1

OUTLINE

- Motivation
- Test Procedures
 - Objectives and Test Infrastructure
 - Grid-parallel operation
 - Island operation
 - Dynamic Island operation
- Component Tests
 - Diesel Gen-set
 - Battery Inverter
- System Tests
- Outlook

Motivation

- Supply of remote sites today mainly with Diesel gen-sets, working as grid former and running 24/7 (non-stop)
- Introduction of PV systems,
 Wind turbines etc. could
 reduce fuel consumption
 and operation costs



Source: https://www.solarstromforschung.de/pv-diesel/

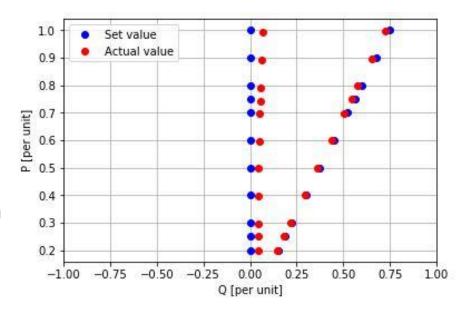
- Application of storage systems to maximize PV contribution and to ensure smooth gen-set operation
- Technical design based on individual components requires high engineering effort and experience
- Application of standardized design methods requires basic technical characteristics and parameters of system components, measured with well-defined test procedures

Test procedures – Objectives and Test Infrastructure

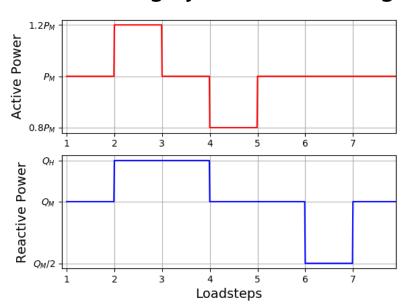
Fraunhofer IEE- SysTec:
 Medium voltage (20kV) test grid and outdoor test bed for hybrid systems and micro grids

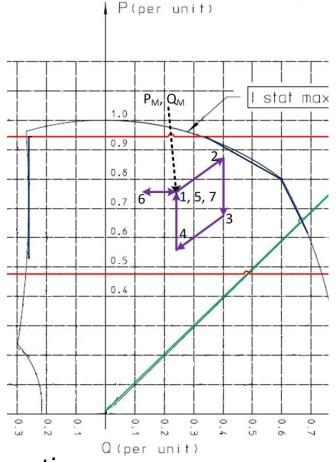
Test procedures – Objectives and Test Infrastructure

- Identification of component characteristics:
 - Diesel Gen-set (MAB SEA 200DE)
 - Battery Inverter (SMA Sunny Central Storage 2200)
 - Hybrid Controller
- Tests of full system to analyze component interactions

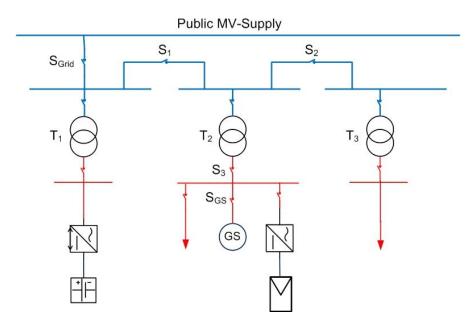

Source: https://www.sma.de/produkte/batterie-wechselrichter/sunny-central-storage-2200-us-2475-us-2500-ev-us-2750-ev-us.html

- Main focus of tests:
 - Grid-parallel operation with external setpoints
 - Voltage- and frequency response to dynamic load changes in island operation
 - Dynamic transitions between grid-parallel and island operation

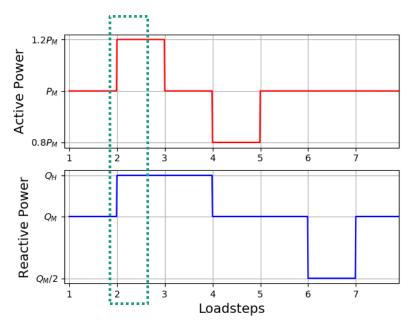

Test procedures – Grid-parallel operation

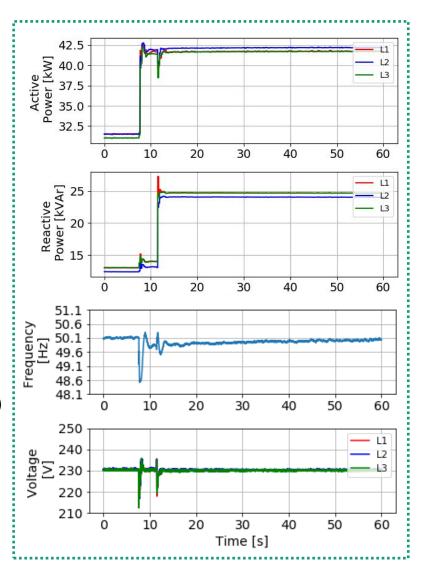

- Identification of...
 - ...Operational ranges with regard to Active and Reactive power output (PQ-Diagram)
 - ...accuracy and response time when operated with external power setpoints
- Well defined test procedures for DGs (WTG, PV, CHP units) avail. in different national / international standards:
 - IEC 61400-21 (WTG)
 - FGW TG3 (WTG, PV, CHPs)

Test procedures – Island operation of Diesel Gen-set

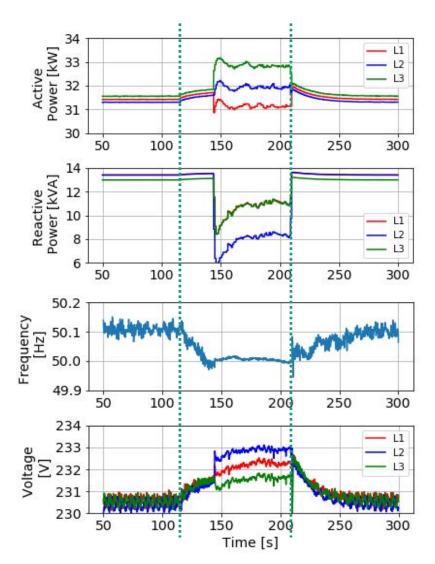

- Objective: Analysis of dynamic frequency and voltage stability
- Tests of components (e.g. Diesel genset) during dynamic load changes

- P_M: Mean Active Power of the entire operation range
- Q_M: Reactive power to reach a power factor of 0.95 with P_M

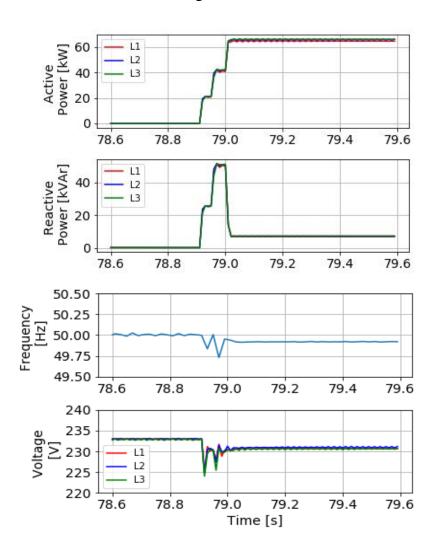

Test procedures – Dynamic Island operation

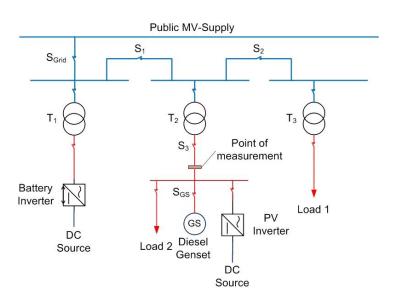

- Investigation of dynamic transitions between a) Island and b) Gridparallel operation; Test of black start capability
 - Scenario 1: Load transfer and transition to island operation
 - Scenario 2: Black start and subsequent supply of island loads
 - Scenario 3: Transition to grid parallel-operation after grid recovery

Component Tests – Island operation Diesel Gen-set

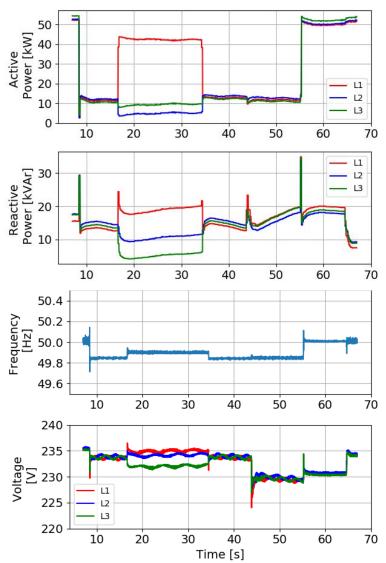

- First reaction of governor to Active Power step almost instantaneous, frequency reaches setpoint (50,1Hz) after approx. 40-50s
- Fast reaction of AVR to Reactive Power step, voltage setp. (230V) is reached within 1-2s

Component Tests – Dynamic Transition Diesel Gen-set


- Transition between gridparallel and island operation
 - Start in island operation
 - Initiation of synchronisation to public grid at approx. 120s, completed after 20s
 - Return to island operation at approx.210s
- Frequency settles in island mode within 40–50s to setpoint value of Diesel Genset (50.1Hz)



Component Tests – Island operation Battery Inverter


- Adaption of test procedure to fit to the rated power of Battery Inverter (2.2 MVA)
- Island operation of Battery Inverter: f-droop setting of 1Hz/P_R
- System response to a synchronous load step
- Different to tests with Diesel Genset: Frequency and voltage do not return to rated values due to f(P), U(Q) droops
- Frequency- and voltage-response completed after a few periods

System Tests - Island operation of Diesel & Battery Inv.

- Joint island operation of Battery Inverter, Diesel Gen-set, Loads and PV inverter
- Battery inverter resp. for frequency control; f-droop setting of 1 Hz/P_R
- Diesel operation with constant
 Power: P = 160 kW; cos(φ) = 0.95

Summary & Outlook

- High engineering effort for design of hybrid power systems
 - Customized solutions with diff. types of generators (Diesel, PV, Wind)
 - For grid stability assessment: Steady state and dynamic behavior of key components has to be analyzed
- Test procedures for key components:
 - Diesel Gen-set, Battery inverter, hybrid system controller
 - Different operating modes: Grid-parallel, Island operation and transitions
- Hybrid controller necessary in the present setup to re-adjust system frequency and voltage to rated values
- Future test scenarios:
 - Tests with hybrid controller
 - Tests with different parametrization of gen-set AVR and governor
 - Tests including fluctuating generators (PV, Wind)

Thank you for your attention! Questions?

Contact:

Dr. Gunter Arnold Fabian Niedermeyer

Fraunhofer IEE Koenigstor 59 34119 Kassel, Germany

<u>gunter.arnold@iee.fraunhofer.de</u> <u>fabian.niedermeyer@iee.fraunhofer.de</u>

The authors would like to thank the German Federal Ministry for Economic Affairs and Energy for funding the project "PV-Diesel" (FKZ 0325752B) and the project "HiPe-PV2" (FKZ 0325785) supporting this work. The authors are solely responsible for the content of the publication.

aufgrund eines Beschlusses des Deutschen Bundestages

