12 Years of Residential 'Off-Grid' PV Hybrid System Operation and Evolution in Nemiah Valley, Canada

Dr. Andrew Swingler
Associate Professor
Faculty of Sustainable Design Engineering
University of Prince Edward Island, CANADA

Lessons Learned 2006 - 2016

- -Enclosed system preferred for maintenance.
- -PV and power converters were very reliable.
- -Difficulties in assessing system performance.
- -Noted reduction in winter battery capacity and system tolerance to operating with reduced-in-capacity batteries.
- -Genset failure was the most significant technical problem. Noted failures at 4000-6000 hours.
- -Design for reduced dependence on the generator in the future.

Seven New Containerized Systems – 2017

Design:

- -15kWh Load
- -6kW PV
- -60kWh Storage
- -85% PV Fraction
- -<250 genset h/yr
- -Remote Control
- -Energy Monitoring

Seven New Containerized Systems – 2017

Lessons Learned 2018+

- -Remote monitoring and configuration is essential.
- -Larger PV doesn't necessarily solve inherent battery performance issues when deeply discharged and/or then operated in partial state of charge.
- -More aggressive charge control set-points or even closed-loop Amp-hour reconciliation charge control may yield better system performance.

Thank-you