

Assessment of Control Strategies Performance in Stand-Alone PV-Diesel System: Simulation and Experimental Test

Thai Phuong DO¹, Gabin A. KOUCOI¹, Franck BOURRY¹, Xavier LE PIVERT²

¹National Institute of Solar Energy - France

²Steadysun - France

Speaker : Pierre Besson May 2018

3rd International Hybrid Power Systems Workshop

Agenda

- I. Context and objectives
- II. Simulation of control strategies
- III. Results
- IV. Validation on an experimental platform
- V. Conclusions

- Off-grid systems for industrial applications (# 100 kVA – # MVA): traditionally based on gensets
 - High OPEX costs
- Hybrid PV-diesel can lower cost
 - Lower OPEX
 - BUT issues linked to PV generation => instability
- Key point: efficient management of genset (Unit commitment)
 => Control strategy (EMS) has to

be adapted to PV integration

Context

Objectives

 Unit Comitment of gensets facilitated by better knowledge of PV production (forecast)

Work plan

- Development of an adapted modeling tool for testing control strategies
- Evaluation of benefits of shortterm PV forecast through simulation
- Application on a real system for validation

Modeling system operation

- Based on a simulation platform from CEA-INES : SPIDER
 - Model-based design applied to power systems for Energy Management System (EMS) development
 - Simulink model libraries

measures

- Possibility to model off-grid and on-grid system behavior, at second time step
 - \Rightarrow Adapted to transient phenomenon in genset and PV
 - \Rightarrow Tested EMS can be implemented in real solutions

Control strategies

- Different control strategies tested:
 - Strategy S1 : « Netload »: Simple strategy, based on net load power
 - Strategy S1b: « Curtailment strategy », PV power can be limited to respect genset power restriction (known as 'fuel saving')
 - Strategy S2: « steadyEye », anticipation of genset dispatching with PV forecast

S2

PV production forecast

Steadysun solution : Photovoltaic power forecast from few minutes to several days

→ "steadyEye": analyzes on-site sky images to forecast PV power up to 1 hour in
advance

Key points

- Image quality
- 15" updates
- Percentiles
- Confidence interval
- Steadysun expertise
 - ✓ Image processing
 - ✓ Algorithms
 - ✓ Real-time system

Results example

⇒ Saving: 55 I for this day with SteadyEye strategy (100 kW system)

Simulation for large scale system

- Simulation case:
 - Large scale system (industry, micro-grid, etc.) => 25 MW

System	Gensets (SDMO)	PV	Charge
Large scale	3 X 9.8 MW	12.5 MWc to 37.5 MWc	25 MW
		Genset time characteristics	
		Tstart	T_min_ON
		6 mn	60 mn
			÷

System characteristics

- More than 40 days simulated with various and representative PV profiles
- Different indicators analyzed: energy unavailability, fuel consumption, genset operating time

 \checkmark

 \checkmark

Instability in creases with PV-rate

Undistributed energy for different PV-rates (load 25 MW)

S1b and S2 strategy are efficient strategies for decreasing energy shortage

Results

steadysun

Results

• Fuel consumption and operation time for different PV-rates (25 MW load): comparison of S1 and S2 vs S1b (reference)

✓ S1 and S2 allows saving ~6% of fuel, and ~20% of operation time for PV-rate of 1. This can be increased when PV-rate increases!

➔ S2 allows both saving fuel and improving system stability

NB:Ref strategy = S1b

Results

 Comparison steadyEye strategy S2 vs S1+Battery storage solution: different storage size compared

 ✓ steadyEye strategy S2 can also be combined with battery storage to reduce battery size for obtaining END = 0 kWh

Experimental validation: set-up

• Test on specific events (6 hours)

Experimental result

Zoom on an event with load increasing and PV production decreasing

Experimental result

Zoom on an event with load increasing and PV production decreasing

Conclusions

Conclusions

- Control strategy = key role for optimizing the benefits of PV integration into hybrid systems
- Operational simulation tool SPIDER for evaluating technic and economic benefits of control strategy
- Validation of results with experiment: Integration of advanced control strategy on real system validated
- Short-term PV forecast allows:
 - 10% saving on fuel consumption (PV-rate of 1.5)
 - Corresponds to a storage of 10 MW / 3 MWh for a 25 MW system

Perspectives

- Better results expected with recent developments in steadyEye solution

Questions

Thanks for your attention!

Pierre.besson@steady-sun.com