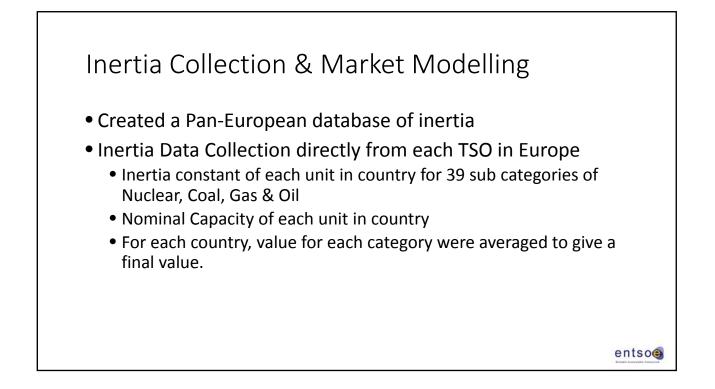
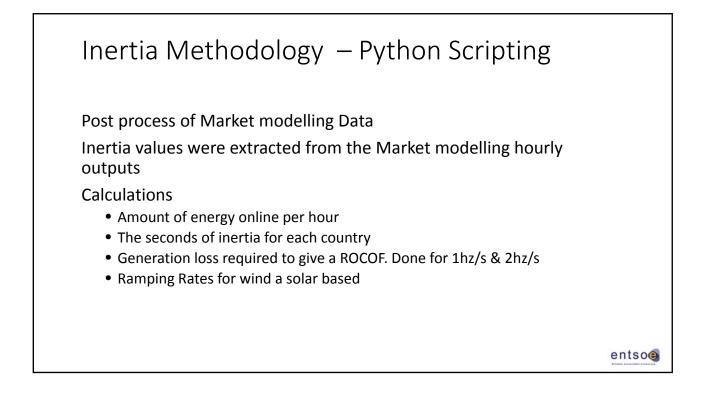
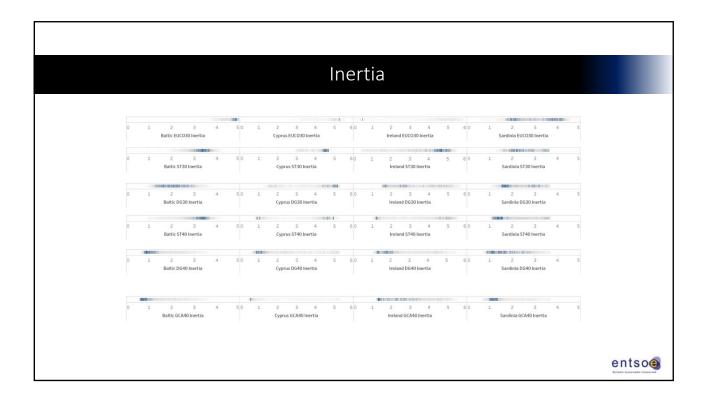

Introduction

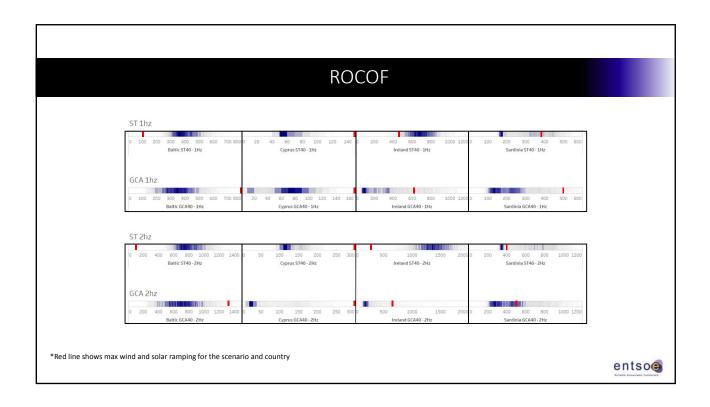
- Dante Powell ENTSOE National Grid Secondee
- Frequency stability study performed by ENTSOE
- Looks at 9 synchronous areas in Europe
- Based on ENTSOs Future Scenario
- This presentation focus' on 4 small synchronous areas
 Cyprus Sardinia Ireland
- Energy, Inertia and ROCOF

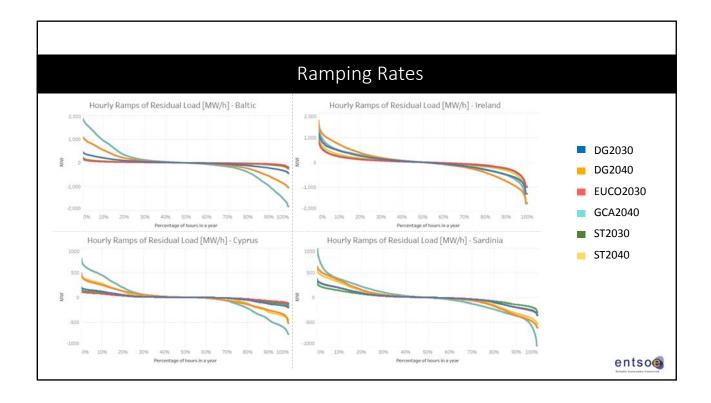
Baltics



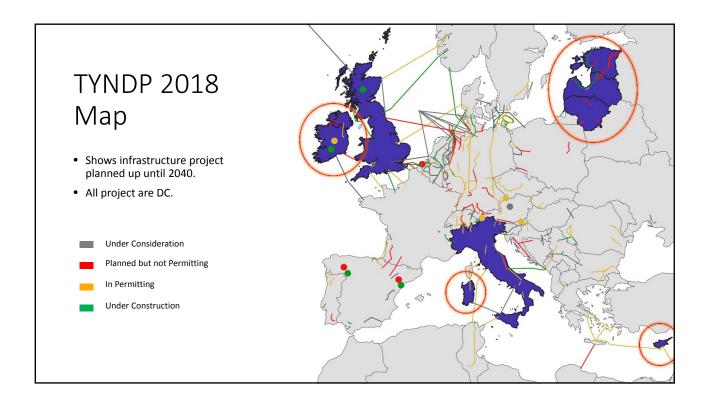


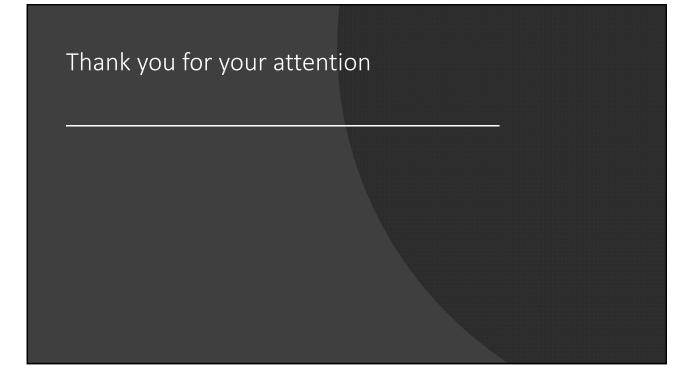



- Market modelling simulations done with Powrsym, BID3, Antares
- comparison checks were done to ensure consistency.
- Pan European climate database, based on 34 years of historical data for wind and solar generation.
- Load factors Projected to the future based of evolution of technology



			W	inc	lar	id !	Sol	ar	Сс	onti	rib	uti	on	to	De	en	Na	anc			
		-			-															-	
0.0	0.2 Balt	0.4 tic ST30 Wine	0.6 1 + Solar % [0.8 Demand	100.0	0.2 Cyprus	0.4 sT30 Wind	0.6 Solar % I	0.6 Demand	1.0 0.0	0.2 Ireland	0.4 IST30 Wini	0.6 d + Solar % I	0.8 Demand	100.0			0.3 0. \$T30 Wind			
0.0	0.2	0.4 Balt	0.6 c DG30	D.B.	100.0	0.2	0.4 Cyprus	0.6	0.8	1000	0.2	0.4 Irelan	0.6 d DG30	08		0.1	0.2	0.3 0. Sardinia		0.6	0.7
-																					-
0.0	0.2	0.4 Baltic	0.6 EUC030	0.8	1000	0.2	0.4 Cyprus E	0.6 UCO30	0.0	1000	0.2	0.4 Ireland	0.6 EUC030	0.8	1000	0.2	2	0.4 Sardinia E	0.6 EUCO30	0.8	10
0.0	0.2	0.4 Balt	0.6. ic 5T40	0.9	1000	0.2	0.4 Cyprus	0.6 5T40	8.0	1.0.0.0	0.2	0.4 trelan	0.6 d \$T40	0.8	100.0	0.1	0.2	0.3 0.4 Sardinia		0.6	0.7 0.8
				-					-				-		1.000	-					
0.0	0.2		0.6 c DG40	0.8	1000	0.2	0.4 Cyprus	0.6 DG40	0.8	1,0,0,0	0.2	0.4 Irelan	0.6 d DG40	0.8	1000	0,1 (0.2	0.3 0.4 Sardinla		0.6 0	1.7 0.8
0.0	0.2	0.4	0.6	0.8	1000	0.2	0.4	0.6	0.8	1000	0.2	0.4	0.6		1000	0.1 0	2.2	03 0.4	0.5 0	2.6 0.7	7 0.8
			GCA40		1.000	100	Cyprus			1000			IGCA40		200.0			Sardinia			


			Energ	gγ			
	8K 10K 12K 14K 0K 30 Energy	3K Cyprus ST30 Energy	6K 0K	20K Ireland ST30 Energy	40K 0K	4⊻ Sardinia ST30 Energy	8K
OK 2K 4K 6K Baltic DG	8K 10K 12K 14K 0K	3K Cyprus DG30 Energy	6K 0K	20K Ireland DG30 Energy	40K 0K	4K Sardinia DG30 Energy	8K
	8K 10K 12K 14K 0K D30 Energy	3K Cyprus EUCO30 Energy	6K 0K	20K Ireland EUCO30 Energy	40K 0K	4K Sardinia EUCO30 Energy	8K
OK 2K 4K 6K Baitic ST4	8K 10K 12K 14K 0K	ЗК Cyprus ST40 Energy	6K 0K	20K Ireland ST40 Energy	40K 0K	4K Sardinia ST40 Energy	8K
0K 2K 4K 6K Baltic GCA	8K 10K 12K 14K 0K 40 Energy	3K Cyprus DG40 Energy	6К ОК	20K Ireland DG40 Energy	40K 0K	4K Sardinia DG40 Energy	8K
OK 2K 4K 6K Baltic GCA	8К 10К 12К 14К 0К 40 Energy	ЗК Cyprus GCA40 Energy	6K 0K	20K Ireland GCA40 Energy	40K 0K	4K Sardinia GCA40 Energy	8K



Key Messages

- Inertia in all synchronous areas will decrease
- Small synchronous areas will see rapid and large frequency excursions following a normal generation loss
- Reduced amount of controllable units lead to high flexibility needs in normal operation.
- Need to guarantee the necessary volume of frequency reserve in all timescales for generation and demand imbalances.
- Strong interconnection between countries can help.

